Psychological Research

, Volume 79, Issue 1, pp 104–119 | Cite as

Map learning and the alignment effect in young and older adults: how do they gain from having a map available while performing pointing tasks?

Original Article

Abstract

Two studies were conducted to investigate age-related differences between young and older adults in the impact of a map being available or not while performing aligned and counter-aligned pointing tasks. In the first study, 19 young adults (aged 20–30) and 19 young–old adults (aged 65–74) studied a map and performed a pointing task. In the second, three groups of adults, 19 of them young (aged 20–30), 19 young–old (aged 65–74), and 19 old–old (aged 75–84), studied a map and performed a pointing task, first with the map available, and then without it. The results of both studies showed that young and older adults’ performance was similar in aligned pointing, while the young performed better than the older adults in counter-aligned pointing. Analyzing the types of error, results showed that older adults made more counter-aligned pointing errors than young adults, both with and without the map. Having the map available improved all participants’ performance, however. Finally, visuo-spatial working memory was found to sustain pointing performance in all age groups and map conditions. Overall, these findings suggest that older adults are specifically susceptible to the alignment effect—making more counter-aligned errors—regardless of whether or not they have a map available while performing pointing tasks.

References

  1. Aretz, A. J., & Wickens, C. D. (1992). The mental rotation of map displays. Human Performance, 5, 303–328. doi:10.1207/s15327043hup0504_3.CrossRefGoogle Scholar
  2. Aubrey, J. B., Li, K. Z. H., & Dobbs, A. R. (1994). Age differences in the interpretation of misaligned ‘‘you-are-here’’ maps. Journal of Gerontology, 49, 29–31. doi:10.1093/geronj/49.1.P29.CrossRefGoogle Scholar
  3. Batschelet, E. (1981). Circular statistics in biology. New York: Academic Press.Google Scholar
  4. Borella, E., Carretti, B., Cornoldi, C., & De Beni, R. (2007). Working memory, control of interference and everyday experience of thought interference: when age makes the difference. Aging Clinical and Experimental Research, 19, 200–206. doi:10.1007/BF03324690.PubMedCrossRefGoogle Scholar
  5. Borella, E., Carretti, B., & De Beni, R. (2008). Working memory and inhibition across the adult life-span. Acta Psychologica, 128, 33–44. doi:10.1016/j.actpsy.2007.09.008.PubMedCrossRefGoogle Scholar
  6. Borella, E., Ghisletta, P., & de Ribaupierre, A. (2011). Age differences in text processing: the role of working memory, inhibition and processing speed. Journal of Gerontology: Psychological Sciences, 66, 311–320. doi:10.1093/geronb/gbr002.CrossRefGoogle Scholar
  7. Borella, E., Meneghetti, C., Ronconi, L., & De Beni, R. (2013). Visuo-spatial abilities across the life span. Developmental Psychology. doi:10.1037/a0033818.
  8. Burigat, S., & Chittaro, L. (2006). Navigation in 3D virtual environments: effects of user experience and location-pointing navigation aids. International Journal of Human Computer Studies, 65, 945–958. doi:10.1016/j.ijhcs.2007.07.003.CrossRefGoogle Scholar
  9. Cattell, R. B., & Cattell, H. E. P. (1963). Measuring intelligence with the culture fair tests. Champaign: Institute for Personality and Ability Testing.Google Scholar
  10. Coluccia, E. (2008). Learning from maps: the role of visuo-spatial working memory. Applied Cognitive Psychology, 22, 217–233. doi:10.1002/acp.1357.CrossRefGoogle Scholar
  11. Coluccia, E., Bosco, A., & Brandimonte, M. A. (2007). The role of visuospatial working memory in map learning: new findings from a map drawing paradigm. Psychological Research, 71, 359–372. doi:10.1007/s00426-006-0090-2.PubMedCrossRefGoogle Scholar
  12. Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: the role of attentional resources. In F. I. M. Craik & S. E. Trehub (Eds.), Aging and cognitive processes (pp. 191–211). New York: Plenum.CrossRefGoogle Scholar
  13. Craik, F. I. M., & Salthouse, T. A. (2008). Handbook of aging and cognition (3rd ed.). Mahwah: Lawrence Erlbaum.Google Scholar
  14. De Beni, R., Borella, E., Carretti, B., Marigo, C., & Nava, L. A. (2008). BAC. Portfolio per la valutazione del benessere e delle abilità cognitive nell’età adulta e avanzata (The assessment of well-being and cognitive abilities in adulthood and aging). Firenze: Giunti OS.Google Scholar
  15. De Beni, R., Pazzaglia, F., & Gardini, S. (2006). The role of mental rotation and age in spatial perspective-taking tasks: when age does not impair perspective-taking performance. Applied Cognitive Psychology, 20, 807–821. doi:10.1002/acp.1229.CrossRefGoogle Scholar
  16. Devlin, A. L., & Wilson, P. H. (2010). Adult age differences in the ability to mentally transform object and body stimuli. Aging, Neuropsychology and Cognition, 17, 709–729. doi:10.1080/13825585.2010.510554.PubMedCrossRefGoogle Scholar
  17. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. doi:10.1016/0022-3956(75)90026-6.PubMedCrossRefGoogle Scholar
  18. Frankenstein, J., Mohler, B. J., Bülthoff, H. H., & Meilinger, T. (2012). Is the map in our head oriented north? Psychological Science, 23, 120–125. doi:10.1177/0956797611429467.PubMedCrossRefGoogle Scholar
  19. Gyselinck, V., Meneghetti, C., Bormetti, M., Orriols, E., Piolino, P., & De Beni, R. (2013). Considering spatial ability in virtual route learning in early aging. Cognitive Processing, 14, 309–316. doi:10.1007/s10339-013-0557-1.PubMedCrossRefGoogle Scholar
  20. Herman, J. F., & Coyne, A. C. (1980). Mental manipulation of spatial information in young and elderly adults. Developmental Psychology, 16, 537–538. doi:10.1037/0012-1649.16.5.537.CrossRefGoogle Scholar
  21. Hölscher, C., Büchner, S., Brösamle, M., Meilinger, T., & Strube, G. (2007). Signs and maps -Cognitive economy in the use of external aids for indoor navigation. In D. S. McNamara & J. G. Trafton (Eds.), Proceedings of the 29th Annual Cognitive Science Society (pp. 377–382). Austin: Cognitive Science Society.Google Scholar
  22. Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196, 187–191. doi:10.1016/j.bbr.2008.08.040.PubMedCrossRefGoogle Scholar
  23. Inagaki, H., Meguro, K., Shimada, M., Ishizaki, J., Okuzumi, H., & Yamadori, A. (2002). Discrepancy between mental rotation and perspective-taking abilities in normal aging assessed by Piaget’s three-mountain task. Journal of Clinical and Experimental Neuropsychology, 24, 18–25. doi:10.1076/jcen.24.1.18.969.PubMedCrossRefGoogle Scholar
  24. ISTAT. (2011). Annuario statistico italiano 2011 (Italian statistic yearbook 2011). Roma: ISTAT.Google Scholar
  25. Jansen, P., Wiedenbauer, G., & Hahn, N. (2010). Manual rotation training improves direction estimations in a virtual environmental space. European Journal of Cognitive Psychology, 22, 6–17. doi:10.1080/09541440802678487.CrossRefGoogle Scholar
  26. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object-manipulation and perspective-taking spatial abilities. Memory and Cognition, 29, 745–756. doi:10.3758/BF03200477.PubMedCrossRefGoogle Scholar
  27. Liben, L. S., & Downs, R. M. (1993). Understanding person-space-map relations: cartographic and developmental perspectives. Developmental Psychology, 29, 739–752. doi:10.1037/0012-1649.29.4.739.CrossRefGoogle Scholar
  28. Lipman, P. D., & Caplan, L. J. (1992). Adult age differences in memory for routes: effects of instruction and spatial diagram. Psychology and Aging, 7, 435–442. doi:10.1037/0882-7974.7.3.435.PubMedCrossRefGoogle Scholar
  29. Luo, Z., Luo, W., Wickens, C. D., & Chen, I.-M. (2010). Spatial learning in a virtual multilevel building: evaluating three exocentric view aids. International Journal of Human-Computer Studies, 68, 746–759. doi:10.1016/j.ijhcs.2010.06.004.CrossRefGoogle Scholar
  30. Mammarella, I. C., Borella, E., Pastore, M., & Pazzaglia, F. (2013). The structure of visuo-spatial abilities in adulthood. Learning and Individual Differences, 25, 99–110. doi:10.1177/0022219411400746.CrossRefGoogle Scholar
  31. Meneghetti, C., Borella, E., Pastore, M. & De Beni, R. (under revision). The role of spatial abilities and self-assessments in cardinal point orientation across the lifespan.Google Scholar
  32. Meneghetti, C., Borella, E., Fiore, F., & De Beni, R. (2013a). The ability to point to well-known places in young and older adults. Aging Clinical Experimental Research, 25, 203–209. doi:10.1007/s40520-013-0027-8.PubMedCrossRefGoogle Scholar
  33. Meneghetti, C., Borella, E., Gyselinck, V., & De Beni, R. (2012a). Age differences in environment route learning: the role of input and recall-test modalities in young and older adults. Learning and Individual Differences, 22, 884–890. doi:10.1016/j.lindif.2012.04.006.CrossRefGoogle Scholar
  34. Meneghetti, C., De Beni, R., Gyselinck, V., & Pazzaglia, F. (2011a). Working memory involvement in spatial text processing: what advantages are gained from extended learning and visuo-spatial strategies? British Journal of Psychology, 102, 499–518. doi:10.1111/j.2044-8295.2010.02007.x.PubMedCrossRefGoogle Scholar
  35. Meneghetti, C., De Beni, R., Gyselinck, V., & Pazzaglia, F. (2013b). The joint role of spatial ability and imagery strategy in sustaining the learning of spatial descriptions under spatial interference. Learning and Individual Differences, 24, 32–41. doi:10.1016/j.lindif.2012.12.021.CrossRefGoogle Scholar
  36. Meneghetti, C., Fiore, F., Borella, E., & De Beni, R. (2011b). Learning a map of environment: the role of visuo-spatial abilities in young and older adults. Applied Cognitive Psychology, 25, 952–959. doi:10.1002/acp.1788.CrossRefGoogle Scholar
  37. Meneghetti, C., Gyselinck, V., Pazzaglia, F., & De Beni, R. (2009). Individual differences in spatial text processing: high spatial ability can compensate for spatial working memory interference. Learning and Individual Differences, 19, 577–589. doi:10.1016/j.lindif.2009.07.007.CrossRefGoogle Scholar
  38. Meneghetti, C., Pazzaglia, F., & De Beni, R. (2012b). The mental representation derived from spatial descriptions is north-up oriented: the role of visuo-spatial abilities. In C. Stachniss, K. Schill, & D. Uttal (Eds.), Spatial cognition VIII, LNAI 7463 (pp. 262–278). Heidelberg: Springer.CrossRefGoogle Scholar
  39. Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: a field study. Environment and Behavior, 23, 47–69. doi:10.1177/0013916591231003.CrossRefGoogle Scholar
  40. Montello, D. R. (2010). You are where? The function and frustration of you-are-here (YAH) maps. Spatial Cognition and Computation, 10, 94–104. doi:10.1080/13875860903585323.CrossRefGoogle Scholar
  41. Montello, D. R., Waller, D., Hegarty, M., & Richardson, A. E. (2004). Spatial memory of real environments, virtual environments, and maps. In G. Allen (Ed.), Human spatial memory: remembering where (pp. 251–285). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  42. Munzer, S., Zimmer, H., & Baus, J. (2012). Navigation assistance: a trade-off between wayfinding support and configural learning support. Journal of Experimental Psychology: Applied, 18, 18–37. doi:10.1037/a0026553.PubMedGoogle Scholar
  43. Presson, C. C., DeLange, N., & Hazelrigg, M. D. (1987). Orientation-specificity in kinesthetic spatial learning: the role of multiple orientations. Memory and Cognition, 15, 225–229. doi:10.3758/BF03197720.PubMedCrossRefGoogle Scholar
  44. Presson, C. C., DeLange, N., & Hazelrigg, M. D. (1989). Orientation specificity in spatial memory: what makes a path different from a map of the path? Journal of Experimental Psychology. Learning, Memory, and Cognition, 15, 887–897. doi:10.1037/0278-7393.15.5.887.PubMedCrossRefGoogle Scholar
  45. Presson, C. C., & Hazelrigg, M. D. (1984). Building spatial representations through primary and secondary learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10, 716–722. doi:10.1037/0278-7393.10.4.716.PubMedCrossRefGoogle Scholar
  46. Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory and Cognition, 27, 741–750. doi:10.3758/BF03211566.PubMedCrossRefGoogle Scholar
  47. Ruddle, R. A., Payne, S. J., & Jones, D. M. (1999). The effects of maps on navigation and search strategies in very-large-scale virtual environments. Journal of Experimental Psychology: Applied, 5, 54–75. doi:10.1037/1076-898X.5.1.54.Google Scholar
  48. Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310. doi:10.1006/cogp2001.0758.PubMedCrossRefGoogle Scholar
  49. Sjolinder, M., Hook, K., Nilsson, L. G., & Andersson, G. (2005). Age differences and the acquisition of spatial knowledge in a three-dimensional environment: evaluating the use of an overview map as a navigation aid. International Journal of Human-Computer Studies, 63, 537–564. doi:10.1016/j.ijhcs.2005.04.024.CrossRefGoogle Scholar
  50. Sluzenski, J., Meneghetti, C., & McNamara, T. (2011). Spatial influence of environmental axes in a baseball field. Spatial Cognition and Computation: An Interdisciplinary Journal, 11, 205–225. doi:10.1080/13875868.2010.542262.CrossRefGoogle Scholar
  51. Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215. doi:10.1037/0278-7393.6.2.174.Google Scholar
  52. Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589. doi:10.1016/0010-0285(82)90019-6.PubMedCrossRefGoogle Scholar
  53. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208. doi:10.1037/h0061626.PubMedCrossRefGoogle Scholar
  54. Vecchi, T., & Richardson, J. T. E. (2000). Active processing in visuo-spatial working memory. Cahiers de Psychologie Cognitive, 19, 3–32.Google Scholar
  55. Wechsler, D. (1981). Wechsler Adult Intelligence Scale (rev edn). New York: Psychological Corporation.Google Scholar
  56. Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12, 372–375. doi:10.1037/0882-7974.12.2.372.PubMedCrossRefGoogle Scholar
  57. Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14, 138–146. doi:10.1016/j.tics.2010.01.001.PubMedCrossRefGoogle Scholar
  58. Meneghetti, C., Borella, E., Grasso, I., & De Beni, R. (2011c). Environment learning with map and/or description: age-related differences in young and older adults. Journal of Cognitive Psychology, 1, 1–14. doi:10.1080/20445911.2011.603694.Google Scholar
  59. Yamamoto, N., & DeGirolamo, G. J. (2012). Differential effects of aging on spatial learning through exploratory navigation and map reading. Frontiers in Aging Neuroscience, 4, 1–7. doi:10.3389/fnagi.2012.00014.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of General PsychologyUniversity of PadovaPaduaItaly

Personalised recommendations