Psychological Research

, Volume 78, Issue 6, pp 756–772 | Cite as

On methodological standards in training and transfer experiments

  • C. Shawn GreenEmail author
  • Tilo Strobach
  • Torsten Schubert


The past two decades have seen a tremendous surge in scientific interest in the extent to which certain types of training—be it aerobic, athletic, musical, video game, or brain trainer—can result in general enhancements in cognitive function. While there are certainly active debates regarding the results in these domains, what is perhaps more pressing is the fact that key aspects of methodology remain unsettled. Here we discuss a few of these areas including expectation effects, test–retest effects, the size of the cognitive test battery, the selection of control groups, group assignment methods, difficulties in comparing results across studies, and in interpreting null results. Specifically, our goal is to highlight points of contention as well as areas where the most commonly utilized methods could be improved upon. Furthermore, because each of the sub-areas above (aerobic training through brain training) share strong similarities in goal, theoretical framework, and experimental approach, we seek to discuss these issues from a general perspective that considers each as members of the same broad “training” domain.


Work Memory Capacity Aerobic Training Action Video Game Work Memory Training Work Memory Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Addelman, S. (1969). The generalized randomized block design. The American Statistician, 23(4), 35–36.Google Scholar
  2. Ahissar, M., Nahum, M., Nelken, I., & Hochstein, S. (2009). Reverse hierarchies and sensory learning. Philosophical Transactions of the Royal Society B, 364, 285–299.Google Scholar
  3. Ball, K. K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218, 697–698.PubMedGoogle Scholar
  4. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.PubMedGoogle Scholar
  5. Baumeister, R. F., Bratslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego depletion: Is the active self a limited resource? Journal of Personality and Social Psychology, 74(5), 1252–1265.PubMedGoogle Scholar
  6. Bavelier, D., Achtman, R. L., Mani, M., & Focker, J. (2011). Neural bases of selective attention in action video game players. Vision Research,. doi: 10.1016/j.visres.2011.08.007.PubMedPubMedCentralGoogle Scholar
  7. Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416.PubMedGoogle Scholar
  8. Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., & Hensch, T. K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience, 30(45), 14964–14971.PubMedPubMedCentralGoogle Scholar
  9. Bergman Nutley, S., Soderqvist, S., Bryde, S., Thorell, L. B., Humphreys, K., & Klingberg, T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: A controlled, randomized study. Developmental Science, 14(3), 591–601.PubMedGoogle Scholar
  10. Blumenthal, J. A., Emery, C. F., Madden, D. J., Schniebolk, S., Walsh-Riddle, M., George, L. K., et al. (1991). Long-term effects of exercise on psychological functioning in older men and women. Journal of Gerontology: Psychological Sciences, 46, 352–361.Google Scholar
  11. Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition. Frontiers in Cognition, 2, 226.Google Scholar
  12. Boot, W. R., Champion, M., Blakely, D. P., Wright, T., Souders, D. J., & Charness, N. (2013a). Video games as a means to reduce age-related cognitive decline: Attitudes, compliance, and effectiveness. Frontiers in Psychology, 4, 31. doi: 10.3389/fpsyg.2013.00031.PubMedPubMedCentralGoogle Scholar
  13. Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.PubMedGoogle Scholar
  14. Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013b). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454.Google Scholar
  15. Brehmer, Y., Westerberg, H., & Backman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 63. doi: 10.3389/fnhum.2012.00063.PubMedPubMedCentralGoogle Scholar
  16. Brooks, J. L. (2012). Counterbalancing for serial order carryover effects in experimental condition orders. [Research Support, Non-U.S. Gov’t]. Psychological Methods, 17(4), 600–614. doi: 10.1037/a0029310.PubMedGoogle Scholar
  17. Bryant, D. C. N., & Deluca, J. (2004). Objective measurement of cognitive fatigue in multiple sclerosis. Rehabilitation Psychology, 49(2), 114–122.Google Scholar
  18. Campbell, D. T., & Stanley, J. (1966). Experimental and quasi-experimental designs for research. Chicago: Rand McNally.Google Scholar
  19. Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica (Amst), 119(2), 217–230.Google Scholar
  20. Chen, L. H., & Lee, W. C. (2011). Two-way minimization: A novel treatment allocation method for small trials. PLoS One, 6(12), e28604.PubMedPubMedCentralGoogle Scholar
  21. Clark, K., Fleck, M. S., & Mitroff, S. R. (2011). Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychologica (Amst), 136(1), 67–72. doi: 10.1016/j.actpsy.2010.10.003.Google Scholar
  22. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.PubMedGoogle Scholar
  23. Colom, R., Martinez-Molina, A., Shih, P., & Santacreu, J. (2010). Intelligence, working memory, and multitasking performance. Intelligence, 38, 543–551.Google Scholar
  24. Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory, but not action inhibition. Psychological Research, 77, 234–239.PubMedGoogle Scholar
  25. Cook, T., & Campbell, D. T. (1979). Quasi-experimental design. Chicago: Rand McNally.Google Scholar
  26. Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30(1), 91–98.PubMedPubMedCentralGoogle Scholar
  27. Detterman, D. K., & Sternberg, R. J. (1993). Transfer on trial: Intelligence, cognition, and instruction. Norwood: Ablex Publishing Corporation.Google Scholar
  28. Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception and Psychophysics, 72(4), 1120–1129.PubMedPubMedCentralGoogle Scholar
  29. Dosher, B. A., & Lu, Z. (2007). The functional form of performance improvements in perceptual learning: Learning rates and transfer. Psychological Science, 18(6), 531–539.PubMedGoogle Scholar
  30. Dye, M. W. G., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50(4), 452–459.PubMedPubMedCentralGoogle Scholar
  31. Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). The development of attention skills in action video game players. Neuropsychologia, 47, 1780–1789.PubMedPubMedCentralGoogle Scholar
  32. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331.Google Scholar
  33. Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.Google Scholar
  34. Fahle, M. (2004). Perceptual learning: A case for early selection. Journal of Vision, 4(10), 879–890.PubMedGoogle Scholar
  35. Feldt, L. S. A. (1958). A comparison of the precision of three experimental designs employing a concomitant variable. Psychometrika, 23, 335–353.Google Scholar
  36. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.PubMedGoogle Scholar
  37. Ferguson, C. J. (2007). The good, the bad, and the ugly: A meta-analytic review of positive and negative effects of violent video games. The Psychiatric Quarterly, 78(4), 309–316.PubMedGoogle Scholar
  38. Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287, 43–44.PubMedGoogle Scholar
  39. Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462–466.PubMedGoogle Scholar
  40. Friedmann, T., & Roblin, R. (1972). Gene therapy for human genetic disease? Science, 175(4025), 949–955.PubMedGoogle Scholar
  41. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.PubMedGoogle Scholar
  42. Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101(1), 217–245.PubMedPubMedCentralGoogle Scholar
  43. Green, C. S., & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692–701.PubMedPubMedCentralGoogle Scholar
  44. Green, C. S., & Bavelier, D. (2012). Learning, attentional control and action video games. Current Biology, 22, R197–R206.PubMedPubMedCentralGoogle Scholar
  45. Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general mechanism for learning with action video games. Current Biology, 23, 1573–1579.Google Scholar
  46. Herzog, M. H., & Fahle, M. (1997). The role of feedback in learning a vernier discrimination task. Vision Research, 37, 2133–2141.PubMedGoogle Scholar
  47. Hill, R. D., Storandt, M., & Malley, M. (1993). The impact of long-term exercise training on psychological function in older adults. Journal of Gerontology, 48, 12–17.Google Scholar
  48. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65.PubMedGoogle Scholar
  49. Holtzer, R., Shuman, M., Mahoney, J. R., Lipton, R., & Verghese, J. (2011). Cognitive fatigue defined in the context of attention networks. Neuropsychology, Development, and Cognition: Section B, Aging, Neuropsychology and Cognition, 18(1), 108–128. doi: 10.1080/13825585.2010.517826.Google Scholar
  50. Huber, O. (2009). The psychological experiment: An introduction (in German). Bern: Hans Huber.Google Scholar
  51. Hubert-Wallander, B., Green, C. S., Sugarman, M., & Bavelier, D. (2011). Changes in search rate but not in the dynamics of exogenous attention in action videogame players. Attention, Perception, and Psychophysics, 73(8), 2399–2412.Google Scholar
  52. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.Google Scholar
  53. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108, 10081–10086.Google Scholar
  54. James, W. (1890). The principles of psychology (Vol. I). New York: Dover Publications Inc.Google Scholar
  55. Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines specificity of perceptual learning. Journal of Vision, 9(3), 1–13.PubMedGoogle Scholar
  56. Kahan, B. C., & Morris, T. P. (2012a). Improper analysis of trials randomised using stratified blocks or minimisation. Statistics in Medicine, 31(4), 328–340. doi: 10.1002/sim.4431.PubMedGoogle Scholar
  57. Kahan, B. C., & Morris, T. P. (2012b). Reporting and analysis of trials using stratified randomisation in leading medical journals: Review and reanalysis. [Research Support, Non-U.S. Gov’t Review]. BMJ, 345, e5840. 10.1136/bmj.e5840.PubMedPubMedCentralGoogle Scholar
  58. Klauer, K. C., & Mierke, J. (2005). Task-set inertia, attitude accessibility, and compatibility-order effects: New evidence for a task-set switching account of the implicit association test effect. Personality and Social Psychology Bulletin, 31(2), 208–217. doi: 10.1177/0146167204271416.PubMedGoogle Scholar
  59. Klingberg, T. (2010). Training and plasticity of working memory [Review]. Trends in Cognitive Sciences, 14(7), 317–324. doi: 10.1016/j.tics.2010.05.002.PubMedGoogle Scholar
  60. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD—A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.PubMedGoogle Scholar
  61. Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15, 126–147.PubMedGoogle Scholar
  62. Krishnan, L., Kang, A., Sperling, G., & Srinivasan, R. (2013). Neural strategies for selective attention distinguish fast-action video game players. Brain Topography, 26(1), 83–97. doi: 10.1007/s10548-012-0232-3.PubMedPubMedCentralGoogle Scholar
  63. Kristjansson, A. (2013). The case for causal influences of action video game play upon vision and attention. Attention, Perception, and Psychophysics, 75(4), 667–672.Google Scholar
  64. Li, R. W., Ngo, C., Nguyen, J., & Levi, D. M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology, 9(8), e1001135.PubMedPubMedCentralGoogle Scholar
  65. Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551.PubMedPubMedCentralGoogle Scholar
  66. Liepelt, R., Strobach, T., Frensch, P. A., & Schubert, T. (2011). Improved intertask coordination after extensive dual-task practice. The Quarterly Journal of Experimental Psychology, 64(7), 1251–1272.PubMedGoogle Scholar
  67. Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychology, 18(1), 62–78.PubMedGoogle Scholar
  68. Lorant-Royer, S., Munch, C., Mescle, H., & Lieury, A. (2010). Kawashima vs “Super Mario”! Should a game be serious in order to stimulate cognitive aptitudes? European Review of Applied Psychology, 60(4), 221–232.Google Scholar
  69. Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: A meta-analysis. Journal of Sport and Exercise Psychology, 29(4), 457–478.PubMedGoogle Scholar
  70. Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291.PubMedGoogle Scholar
  71. Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. Journal of Neuroscience, 31(3), 992–998.PubMedGoogle Scholar
  72. Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle. Psychological Bulletin, 126(2), 247–259.PubMedGoogle Scholar
  73. Neufeld, K. A. (1986). Understanding of selected pre-number concepts: Relationships to a formal music program. Alberta Journal of Educational Research, 32(2), 132–139.Google Scholar
  74. Nichols, A. L., & Maner, J. K. (2008). The good-subject effect: Investigating participant demand characteristics. The Journal of General Psychology, 135(2), 151–165.PubMedGoogle Scholar
  75. Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., et al. (2013). Brain training game boosts executive functions, working memory and processing speed in the young adults: A randomized controlled trial. PLoS ONE, 8(2), e55518. doi: 10.1371/journal.pone.0055518.PubMedPubMedCentralGoogle Scholar
  76. Orne, M. T. (1962). On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. American Psychologist, 17, 776–783.Google Scholar
  77. Osgood, C. E. (1949). The similarity paradox in human learning: A resolution. Psychological Review, 56(3), 132–143.PubMedGoogle Scholar
  78. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–778.PubMedPubMedCentralGoogle Scholar
  79. Plous, S. (1993). The psychology of judgment and decision making. New York: McGraw-Hill Education.Google Scholar
  80. Pocock, S. J., & Simon, R. (1975). Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics, 31, 103–115.PubMedGoogle Scholar
  81. Rabipour, S., & Raz, A. (2012). Training the brain: Fact and fad in cognitive and behavioral remediation. Brain and Cognition, 79, 159–179.PubMedGoogle Scholar
  82. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379.Google Scholar
  83. Rutherford, A. (2010). Brain-training games don’t work. The Guardian. Retrieved from
  84. Saghaei, M. (2011). An overview of randomization and minimization programs for randomized clinical trials. Journal of Medical Signals and Sensors, 1(1), 55–61.PubMedPubMedCentralGoogle Scholar
  85. Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Front Hum Neurosci, 6, 166. doi: 10.3389/fnhum.2012.00166.PubMedPubMedCentralGoogle Scholar
  86. Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514.PubMedGoogle Scholar
  87. Schlickum, M. K., Hedman, L., Enochsson, L., Kjellin, A., & Fellander-Tsai, L. (2009). Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: A prospective randomized study. World Journal of Surgery, 33(11), 2360–2367.PubMedGoogle Scholar
  88. Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136(2), 241–255. doi: 10.1037/0096-3445.136.2.241.Google Scholar
  89. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.Google Scholar
  90. Schmiedek, F., Lovden, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2. doi: 10.3389/fnagi.2010.00027.
  91. Schubert, T., & Strobach, T. (2012). Video game experience and optimized executive control skills—On false positives and false negatives: Reply to Boot and Simons (2012). Acta Psychologica, 141(2), 278–280.Google Scholar
  92. Seitz, A. R., Nanez, J. E, Sr, Holloway, S., Tsushima, Y., & Watanabe, T. (2006). Two cases requiring external reinforcement in perceptual learning. Journal of Vision, 6(9), 966–973.PubMedGoogle Scholar
  93. Sheridan, C. (2011). Gene therapy finds its niche. Nature Biotechnology, 29(2), 121–128. doi: 10.1038/nbt.1769.PubMedGoogle Scholar
  94. Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1, 185–193.Google Scholar
  95. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? Psychological Bulletin, 138(4), 623–654.Google Scholar
  96. Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge: Harvard University Press.Google Scholar
  97. Smith, R. L. (1984). Sequential treatment allocation using biased coin designs. Journal of the Royal Statistical Society: Series B, 46, 519–543.Google Scholar
  98. Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603.PubMedPubMedCentralGoogle Scholar
  99. Spence, I., Yu, J. J., Feng, J., & Marshman, J. (2009). Women match men when learning a spatial skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 1097–1103.PubMedGoogle Scholar
  100. Strobach, T., Frensch, P. A., & Schubert, T. (2012a). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24.PubMedGoogle Scholar
  101. Strobach, T., Frensch, P. A., Soutschek, A., & Schubert, T. (2012b). Investigation on the improvement and transfer of dual-task coordination skills. Psychological Research, 76(6), 794–811.PubMedGoogle Scholar
  102. Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 120(3), 439–471.PubMedGoogle Scholar
  103. Taves, D. R. (1974). Minimization: A new method of assigning patients to treatment and control groups. Clinical Pharmacology and Therapeutics, 15, 443–453.PubMedGoogle Scholar
  104. Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.Google Scholar
  105. Tremblay, S., Houle, G., & Ostry, D. J. (2008). Specificity of speech motor learning. Journal of Neuroscience, 28(10), 2426–2434.PubMedGoogle Scholar
  106. Trick, L. M., Jaspers-Fayer, F., & Sethi, N. (2005). Multiple-object tracking in children: The “Catch the Spies” task. Cognitive Development, 20(3), 373–387.Google Scholar
  107. Vaughn, K. (2000). Music and mathematics: Modest support for the oft-claimed relationship. Journal of Aesthetic Education, 34(3/4), 149–166.Google Scholar
  108. von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58.Google Scholar
  109. Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., & Kramer, A. F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2. doi: 10.3389/fnagi.2010.00032.
  110. Watkins, M. W., & Smith, L. G. (2013). Long-term stability of the Wechsler intelligence scale for children-fourth edition. Psychological Assessment,. doi: 10.1037/a0031653.Google Scholar
  111. Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effect of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 26, 1003–1017.Google Scholar
  112. Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a first-person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 1286–1293.PubMedGoogle Scholar
  113. Xiao, L., Zhang, J., Wang, R., Klein, S. A., Levi, D. M., & Yu, C. (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Current Biology, 18, 1922–1926.PubMedPubMedCentralGoogle Scholar
  114. Zhao, W., Hill, M. D., & Palesch, Y. (2012). Minimal sufficient balance—A new strategy to balance baseline covariates and preserve randomness of treatment allocation. Statistical Methods in Medical Research,. doi: 10.1177/0962280212436447.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Shawn Green
    • 1
    Email author
  • Tilo Strobach
    • 2
  • Torsten Schubert
    • 2
  1. 1.Department of Psychology, Games+Learning SocietyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of PsychologyHumboldt University, BerlinBerlinGermany

Personalised recommendations