Psychological Research

, Volume 78, Issue 6, pp 878–891 | Cite as

Optimal training design for procedural motor skills: a review and application to laparoscopic surgery

  • Edward N. Spruit
  • Guido P. H. Band
  • Jaap F. Hamming
  • K. Richard Ridderinkhof


This literature review covers the choices to consider in training complex procedural, perceptual and motor skills. In particular, we focus on laparoscopic surgery. An overview is provided of important training factors modulating the acquisition, durability, transfer, and efficiency of trained skills. We summarize empirical studies and their theoretical background on the topic of training complex cognitive and motor skills that are pertinent to proficiency in laparoscopic surgery. The overview pertains to surgical simulation training for laparoscopy, but also to training in other demanding procedural and dexterous tasks, such as aviation, managing complex systems and sports. Evidence-based recommendations are provided for facilitating efficiency in laparoscopic motor skill training such as session spacing, adaptive training, task variability, part-task training, mental imagery and deliberate practice.


Motor Skill Skill Acquisition Mental Imagery Deliberate Practice Errorless Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aggarwal, R., & Darzi, A. (2006). Technical-skills training in the 21st century. New England Journal of Medicine, 355(25), 2695–2696.PubMedCrossRefGoogle Scholar
  2. Aggarwal, R., Moorthy, K., & Darzi, A. (2004). Laparoscopic skills training and assessment. British Journal of Surgery, 91(12), 1549–1558.PubMedCrossRefGoogle Scholar
  3. Arora, S., Aggarwal, R., Sirimanna, P., Moran, A., Grantcharov, T., Kneebone, R., et al. (2011). Mental practice enhances surgical technical skills: A randomized controlled study. Annals of Surgery, 253(2), 265–270.PubMedCrossRefGoogle Scholar
  4. ASGE training committee (2012). Small-bowel endoscopy core curriculum. Gastrointestinal endoscopy. doi: 10.1016/j.gie.2012.09.023.
  5. Avgerinos, D. V., Goodell, K. H., Waxberg, S., Cao, C. G. L., & Schwaitzberg, S. D. (2005). Comparison of the sensitivity of physical and virtual laparoscopic surgical training simulators to the user’s level of experience. Surgical Endoscopy and Other Interventional Techniques, 19(9), 1211–1215.PubMedCrossRefGoogle Scholar
  6. Bashankaev, B., Baido, S., & Wexner, S. D. (2011). Review of available methods of simulation training to facilitate surgical education. Surgical Endoscopy, 25(1), 28–35.PubMedCrossRefGoogle Scholar
  7. Bjork, R. A. (1999). Assessing our own competence: Heuristics and illusions. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 435–459). Cambridge: MIT Press.Google Scholar
  8. Bourne, L. E, Jr, & Healy, A. F. (2012). Introduction: Training and its cognitive underpinnings. In A. F. Healy & L. E. Bourne Jr (Eds.), Training cognition: Optimizing efficiency, durability, and generalizability (pp. 1–12). New York: Psychology Press.Google Scholar
  9. Boutin, A., & Blandin, Y. (2010). On the cognitive processes underlying contextual interference: Contributions of practice schedule, task similarity and amount of practice. Human Movement Science, 29(6), 910–920.PubMedCrossRefGoogle Scholar
  10. Bramson, R., Sanders, C. W., Sadoski, M., West, C., Wiprud, R., English, M., et al. (2011). Comparing the effects of mental imagery rehearsal and physical practice on learning lumbar puncture by medical students. Annals of Behavioral Science and Medical Education, 17(2), 3–6.Google Scholar
  11. Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252–255.PubMedCrossRefGoogle Scholar
  12. Brouziyne, M., & Molinaro, C. (2005). Mental imagery combined with physical practice of approach shots for golf beginners. Perceptual and Motor Skills, 101(1), 203–211.PubMedCrossRefGoogle Scholar
  13. Carswell, C. M., Clarke, D., & Seales, W. B. (2005). Assessing mental workload during laparoscopic surgery. Surgical Innovation, 12(1), 80–90.PubMedCrossRefGoogle Scholar
  14. Chmarra, M. K., Bakker, N. H., Grimbergen, C. A., & Dankelman, J. (2006). TrEndo, a device for tracking minimally invasive surgical instruments in training setups. Sensors and Actuators, A: Physical, 126(2), 328–334.CrossRefGoogle Scholar
  15. Chmarra, M. K., Dankelman, J., van den Dobbelsteen, J. J., & Jansen, F. W. (2008). Force feedback and basic laparoscopic skills. Surgical Endoscopy, 22(10), 2140–2148.PubMedCrossRefGoogle Scholar
  16. Coyle, D. (2009). The Talent Code: Greatness isn’t born, it’s grown. Here’s how. New York: Bantam Dell, a division of Random House, Inc.Google Scholar
  17. Crochet, P., Aggarwal, R., Dubb, S. S., Ziprin, P., Rajaretnam, N., Grantcharov, T., et al. (2011). Deliberate practice on a virtual reality laparoscopic simulator enhances the quality of surgical technical skills. Annals of Surgery, 253(6), 1216–1222.PubMedCrossRefGoogle Scholar
  18. Cumming, J. L., & Hall, C. (2002). Deliberate imagery practice: the development of imagery skills in competitive athletes. Journal of Sports Sciences, 20(2), 137–145.PubMedCrossRefGoogle Scholar
  19. Cumming, J. L., & Ste-Marie, D. M. (2001). The cognitive and motivational effects of imagery training: A matter of perspective. The Sport Psychologist, 15, 276–288.Google Scholar
  20. Datta, V., Chang, A., Mackay, S., & Darzi, A. (2002). The relationship between motion analysis and surgical technical assessments. The American journal of surgery, 184(1), 70–73.CrossRefGoogle Scholar
  21. Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic review of the distribution of practice effect: Now you see it, now you don’t. Journal of Applied Psychology, 84, 795–805.CrossRefGoogle Scholar
  22. Dreyfus, H. L., Dreyfus, S. E., & Athanasioum, T. (1986). Mind over Machine. New York: Free Press.Google Scholar
  23. Duffy, A. J., Hogle, N. J., McCarthy, H., Lew, J. I., Egan, A., Christos, P., et al. (2005). Construct validity for the LAPSIM laparoscopic surgical simulator. Surgical Endoscopy and Other Interventional Techniques, 19(3), 401–405.PubMedCrossRefGoogle Scholar
  24. Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58.CrossRefGoogle Scholar
  25. Ericsson, K. A. (2006). The influence of experience and deliberate practice on the development of superior expert performance. In K. A. Ericsson (Ed.), The Cambridge handbook of expertise and expert performance (pp. 685–705). London: Cambridge University Press.Google Scholar
  26. Ericsson, K. A., Krampe, R Th, & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406.CrossRefGoogle Scholar
  27. Fadde, P. J. (2010). Training complex psychomotor performance skills: A part-task approach. In K. H. Silber & R. Foshay (Eds.), Handbook of training and improving workplace performance Volume 1: Instructional design and training delivery. Wiley, New York: For The International Society for Performance Improvement.Google Scholar
  28. Gallagher, A. G., Jordan-Black, J. A., & O’Sullivan, G. C. (2012). Prospective, randomized assessment of the acquisition, maintenance, and loss of laparoscopic skills. Annals of Surgery, 256(2), 387–393.PubMedCrossRefGoogle Scholar
  29. Gallagher, A. G., McClure, N., McGuigan, J., Ritchie, K., & Sheehy, N. P. (2008). An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills. Endoscopy, 30(07), 617–620.CrossRefGoogle Scholar
  30. Gallagher, A. G., & O’Sullivan, G. C. (2012). Fundamentals of surgical simulation. London: Springer.CrossRefGoogle Scholar
  31. Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., et al. (2005). Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery, 241(2), 364.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Goodell, K. H., Cao, C. G., & Schwaitzberg, S. D. (2006). Effects of cognitive distraction on performance of laparoscopic surgical tasks. Journal of Laparoendoscopic & Advanced Surgical Techniques, 16(2), 94–98.CrossRefGoogle Scholar
  33. Gopher, D., Weil, M., & Siegel, D. (1989). Practice under changing priorities: An approach to the training of complex skills. Acta Psychologica, 71(1), 147–177.CrossRefGoogle Scholar
  34. Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224.PubMedCrossRefGoogle Scholar
  35. Hall, C. R., Mack, D. E., Paivio, A., & Hausenblas, H. A. (1998). Imagery use by athletes: Development of the sport imagery questionnaire. International Journal of Sport Psychology, 29, 73–89.Google Scholar
  36. Hallgató, E., Győri-Dani, D., Pekár, J., Janacsek, K., & Nemeth, D. (2012). The differential consolidation of perceptual and motor learning in skill acquisition. Cortex,. doi: 10.1016/j.cortex.2012.01.002.PubMedGoogle Scholar
  37. Hiemstra, E., Kolkman, W., & Jansen, F. W. (2008). Skills training in minimally invasive surgery in Dutch obstetrics and gynecology residency curriculum. Gynecological Surgery, 5(4), 321–325.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hsu, K. E., Man, F. Y., Gizicki, R. A., Feldman, L. S., & Fried, G. M. (2008). Experienced surgeons can do more than one thing at a time: Effect of distraction on performance of a simple laparoscopic and cognitive task by experienced and novice surgeons. Surgical Endoscopy, 22(1), 196–201.PubMedCrossRefGoogle Scholar
  39. Immenroth, M., Bürger, T., Brenner, J., Nagelschmidt, M., Eberspächer, H., & Troidl, H. (2007). Mental training in surgical education: A randomized controlled trial. Annals of Surgery, 245(3), 385.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jordan, J. A., Gallagher, A. G., McGuigan, J., McGlade, K., & McClure, N. (2000). A comparison between randomly alternating imaging, normal laparoscopic imaging, and virtual reality training in laparoscopic psychomotor skill acquisition. The American Journal of Surgery, 180(3), 208–211.CrossRefGoogle Scholar
  41. Kahol, K., Leyba, M. J., Deka, M., Deka, V., Mayes, S., Smith, M., et al. (2008). Effect of fatigue on psychomotor and cognitive skills. The American Journal of Surgery, 195(2), 195–204.CrossRefGoogle Scholar
  42. Kolkman, W., Van de Put, M. A. J., Wolterbeek, R., Trimbos, J. B. M. Z., & Jansen, F. W. (2008). Laparoscopic skills simulator: Construct validity and establishment of performance standards for residency training. Gynecological Surgery, 5(2), 109–114.CrossRefGoogle Scholar
  43. Korman, M., Doyon, J., Doljansky, J., Carrier, J., Dagan, Y., & Karni, A. (2007). Daytime sleep condenses the time course of motor memory consolidation. Nature Neuroscience, 10(9), 1206–1213.PubMedCrossRefGoogle Scholar
  44. Locke, E.A., & Latham, G.P. (2002). Building a practically useful theory of goal setting and task motivation on November 9th, 2011. In business models, business theories. American Psychologist, 57(9), 705–717.Google Scholar
  45. Loehr, J.E., & Schwartz, T. (2003). The power of full engagement: managing energy, not time, is the key to high performance and personal renewal. New York: Simon & Schuster, Inc.Google Scholar
  46. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527.CrossRefGoogle Scholar
  47. Luursema, J. M., Buzink, S. N., Verwey, W. B., & Jakimowicz, J. J. (2010). Visuo-spatial ability in colonoscopy simulator training. Advances in Health Sciences Education, 15(5), 685–694.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Luursema, J. M., Verwey, W. B., & Burie, R. (2012). Visuospatial ability factors and performance variables in laparoscopic simulator training. Learning and Individual Differences, 22(5), 632–638.CrossRefGoogle Scholar
  49. Lynagh, M., Burton, R., & Sanson-Fisher, R. (2007). A systematic review of medical skills laboratory training: Where to from here? Medical Education, 41(9), 879–887.PubMedCrossRefGoogle Scholar
  50. Macedonia, M. (2002). Games, simulation, and the military education dilemma. In Internet and the University: 2001 Forum (pp. 157–167).Google Scholar
  51. Magill, R. A., & Hall, K. G. (1990). A review of the contextual interference effect in motor skill acquisition. Human Movement Science, 9(3), 241–289.CrossRefGoogle Scholar
  52. Mané, A. M., Adams, J. A., & Donchin, E. (1989). Adaptive and part-whole training in the acquisition of a complex perceptual-motor skill. Acta Psychologica, 71(1), 179–196.CrossRefGoogle Scholar
  53. Mann, K. V. (2011). Theoretical perspectives in medical education: Past experience and future possibilities. Medical Education, 45, 60–68.PubMedCrossRefGoogle Scholar
  54. Martin, J. A., Regehr, G., Reznick, R., MacRae, H., Murnaghan, J., Hutchison, C., et al. (1997). Objective structured assessment of technical skill (OSATS) for surgical residents. British Journal of Surgery, 84(2), 273–278.PubMedCrossRefGoogle Scholar
  55. Masters, R. S., Lo, C. Y., Maxwell, J. P., & Patil, N. G. (2008a). Implicit motor learning in surgery: Implications for multi-tasking. Surgery, 143, 140–145.PubMedCrossRefGoogle Scholar
  56. Masters, R. S. W., MacMahon, K. M. A., & Pall, H. S. (2004). Implicit motor learning in Parkinson’s disease. Rehabilitation Psychology, 49, 79–82.CrossRefGoogle Scholar
  57. Masters, R. S. W., Poolton, J. M., Maxwell, J. P., et al. (2008b). Implicit motor learning and complex decision making in time-constrained environments. Journal of Motor Behavior, 40, 71–79.PubMedCrossRefGoogle Scholar
  58. Maxwell, J. P., Masters, R. S. W., Kerr, E., et al. (2001). The implicit benefit of learning without errors. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 54, 1049–1068.CrossRefGoogle Scholar
  59. McDaniel, M. (2012). Put the SPRINT in Knowledge Training: Training with SPacing, Retrieval, and INTerleaving. In A. F. Healy & L. E. Bourne Jr (Eds.), Training cognition: Optimizing efficiency, durability, and generalizability (pp. 267–286). New York: Psychology Press.Google Scholar
  60. McDermott, P.L., Carolan, T., & Wickens, C.D. (2012). Part task training methods in simulated and realistic tasks. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications, 56(1), 2502–2506.Google Scholar
  61. McDougall, E. M., Corica, F. A., Boker, J. R., Sala, L. G., Stoliar, G., Borin, J. F., et al. (2006). Construct validity testing of a laparoscopic surgical simulator. Journal of the American College of Surgeons, 202(5), 779–787.PubMedCrossRefGoogle Scholar
  62. McGaghie, W. C., Issenberg, S. B., Cohen, M. E. R., Barsuk, J. H., & Wayne, D. B. (2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Academic Medicine: Journal of the Association of American Medical Colleges, 86(6), 706–711.CrossRefGoogle Scholar
  63. Moulton, C.A.E., Dubrowski, A., MacRae, H., Graham, B., Grober, E., & Reznick, R. (2006). Teaching surgical skills: what kind of practice makes perfect? A randomized, controlled trial. Annals of surgery, 244(3), 400.Google Scholar
  64. Mullen, R., Hardy, L., & Oldham, A. (2007). Implicit and explicit control of motor actions: Revisiting some early evidence. British Journal of Psychology, 98, 141–156.PubMedCrossRefGoogle Scholar
  65. Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 89–105). Oxford: New York.Google Scholar
  66. Peck, A. C., & Detweiler, M. C. (2000). Training concurrent multistep procedural tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society, 42(3), 379–389.CrossRefGoogle Scholar
  67. Plant, E. A., Ericsson, K. A., Hill, L., & Asberg, K. (2005). Why study time does not predict grade point average across college students: Implications of deliberate practice for academic performance. Contemporary Educational Psychology, 30(1), 96–116.Google Scholar
  68. Pluyter, J. R., Buzink, S. N., Rutkowski, A. F., & Jakimowicz, J. J. (2010). Do absorption and realistic distraction influence performance of component task surgical procedure? Surgical endoscopy, 24(4), 902–907.Google Scholar
  69. Pluyter, J. R., Rutkowski, A., Jakimowicz, J.J., & Saunders, C.S. (2012). Measuring users’ mental strain when performing technology based surgical tasks on a surgical simulator using thermal imaging technology. 45th Hawaii International Conference on System Science (HICSS), (pp. 2920–2926).Google Scholar
  70. Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362–378.Google Scholar
  71. Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2007). Passing thoughts on the evolutionary stability of implicit motor behavior: Performance retention under physiological fatigue. Consciousness and Cognition, 16, 456–468.PubMedCrossRefGoogle Scholar
  72. Proteau, L., Blandin, Y., Alain, C., & Dorion, A. (1994). The effects of the amount and variability of practice on the learning of a multi-segmented motor task. Acta Psychologica, 85(1), 61–74.PubMedCrossRefGoogle Scholar
  73. Purves, D., Cabeza, R., Huettel, S. A., LaBar, K. S., Platt, M. L., & Woldorff, M. G. (2012). Principles of Cognitive Neuroscience (2nd ed.). Sunderland: Sinauer Associates Inc.Google Scholar
  74. Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 5, 855–863.CrossRefGoogle Scholar
  75. Reznick, R. K., & MacRae, H. (2006). Teaching surgical skills—changes in the wind. New England Journal of Medicine, 355(25), 2664–2669.PubMedCrossRefGoogle Scholar
  76. Risucci, D., Geiss, A., Gellman, L., Pinard, B., & Rosser, J. (2001). Surgeon-specific factors in the acquisition of laparoscopic surgical skills. The American Journal of Surgery, 181(4), 289–293.CrossRefGoogle Scholar
  77. Ritter, E. M., McClusky, D. A., Gallagher, A. G., & Smith, C. D. (2005). Real-time objective assessment of knot quality with a portable tensiometer is superior to execution time for assessment of laparoscopic knot-tying performance. Surgical Innovation, 12(3), 233–237.PubMedCrossRefGoogle Scholar
  78. Rook, J. W., & Zijlstra, F. R. (2006). The contribution of various types of activities to recovery. European Journal of Work and Organizational Psychology, 15(2), 218–240.CrossRefGoogle Scholar
  79. SAGES: Society of American Gastrointestinal and Endoscopic Surgeons (2013). Fundamentals of laparoscopic surgery (FLS).
  80. Salas, E., Bowers, C. A., & Rhodenizer, L. (1998). It is not how much you have but how you use it: Toward a rational use of simulation to support aviation training. The International Journal of Aviation Psychology, 8(3), 197–208.PubMedCrossRefGoogle Scholar
  81. Salden, R. J., Paas, F., & van Merrienboer, J. J. (2006). A comparison of approaches to learning task selection in the training of complex cognitive skills. Computers in Human Behavior, 22(3), 321–333.CrossRefGoogle Scholar
  82. Salkini, M. W., & Hamilton, A. J. (2010). The effect of age on acquiring laparoscopic skills. Journal of Endourology, 24(3), 377–379.PubMedCrossRefGoogle Scholar
  83. Sanders, C. W., Sadoski, M., Bramson, R., Wiprud, R., & Van Walsum, K. (2004). Comparing the effects of physical practice and mental imagery rehearsal on learning basic surgical skills by medical students. American Journal of Obstetrics and Gynecology, 191(5), 1811–1814.PubMedCrossRefGoogle Scholar
  84. Sanders, C. W., Sadoski, M., van Walsum, K., Bramson, R., Wiprud, R., & Fossum, T. W. (2008). Learning basic surgical skills with mental imagery: using the simulation centre in the mind. Medical Education, 42(6), 607–612.PubMedCrossRefGoogle Scholar
  85. Sanders, C. W., Sadoski, M., Wasserman, R. M., Wiprud, R., English, M., & Bramson, R. (2007). Comparing the effects of physical practice and mental imagery rehearsal on learning basic venipuncture by medical students. Imagination, Cognition and Personality, 27(2), 117–127.CrossRefGoogle Scholar
  86. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.CrossRefGoogle Scholar
  87. Schreuder, H. W., Oei, G., Maas, M., Borleffs, J. C., & Schijven, M. P. (2011). Implementation of simulation in surgical practice: Minimally invasive surgery has taken the lead: The Dutch experience. Medical Teacher, 33(2), 105–115.PubMedCrossRefGoogle Scholar
  88. Seymour, N. E. (2008). VR to OR: A review of the evidence that virtual reality simulation improves operating room performance. World Journal of Surgery, 32(2), 182–188.PubMedCrossRefGoogle Scholar
  89. Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., et al. (2002). Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shapiro, M. J., Morey, J. C., Small, S. D., Langford, V., Kaylor, C. J., Jagminas, L., et al. (2004). Simulation based teamwork training for emergency department staff: Does it improve clinical team performance when added to an existing didactic teamwork curriculum? Quality and Safety in Health Care, 13(6), 417–421.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shea, C. H., Lai, Q., Black, C., & Park, J. H. (2000). Spacing practice sessions across days benefits the learning of motor skills. Human Movement Science, 19(5), 737–760.CrossRefGoogle Scholar
  92. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(2), 127–190.CrossRefGoogle Scholar
  93. Son, L. K. (2004). Spacing one’s study: evidence for a metacognitive control strategy. Journal of Experimental Psychology Learning, Memory, and Cognition, 30(3), 601–604.PubMedCrossRefGoogle Scholar
  94. Strandbygaard, J., Bjerrum, F., Maagaard, M., Winkel, P., Larsen, C. R., Ringsted, C., et al. (2013). Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator. Annals of Surgery, 257(5), 839–844.PubMedCrossRefGoogle Scholar
  95. Sturm, L. P., Windsor, J. A., Cosman, P. H., Cregan, P., Hewett, P. J., & Maddern, G. J. (2008). A systematic review of skills transfer after surgical simulation training. Annals of Surgery, 248(2), 166–179.PubMedCrossRefGoogle Scholar
  96. Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.CrossRefGoogle Scholar
  97. Teague, R. C., Gittelman, S. S., & Park, O. C. (1994). A review of literature on part-task and whole-task training and context dependency. Alexandria: Army Research Institute for the Behavioral and Social Sciences.Google Scholar
  98. Thijssen, A. S., & Schijven, M. P. (2010). Contemporary virtual reality laparoscopy simulators: Quicksand or solid grounds for assessing surgical trainees? The American Journal of Surgery, 199(4), 529–541.CrossRefGoogle Scholar
  99. Tholey, G., Desai, J. P., & Castellanos, A. E. (2005). Force feedback plays a significant role in minimally invasive surgery: Results and analysis. Annals of Surgery, 241(1), 102–109.PubMedPubMedCentralGoogle Scholar
  100. Van der Linden, D. (2011). The urge to stop: The cognitive and biological nature of acute mental fatigue. In P. L. Ackerman (Ed.), Cognitive fatigue: Multidisciplinary perspectives on current research and future applications (pp. 149–164). Washington, DC: APA Press.Google Scholar
  101. Van der Wal, G. (2007). Risico’s minimaal invasieve chirurgie onderschat. Den Haag: Inspectie voor de Gezondheidszorg.Google Scholar
  102. Van Gog, T., Ericsson, K. A., Rikers, R. M., & Paas, F. (2005). Instructional design for advanced learners: Establishing connections between the theoretical frameworks of cognitive load and deliberate practice. Educational Technology Research and Development, 53(3), 73–81.CrossRefGoogle Scholar
  103. Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43(1), 16–26.CrossRefGoogle Scholar
  104. Van Sickle, K. R., Baghai, M., Huang, I. P., Goldenberg, A., Smith, C. D., & Ritter, E. M. (2008). Construct validity of an objective assessment method for laparoscopic intracorporeal suturing and knot tying. American Journal of Surgery, 196(1), 74–80.PubMedCrossRefGoogle Scholar
  105. Whiting, H. T. A., & den Brinker, B. P. (1981). Image of the act. In J. P. Das, R. Mulcahy, & A. E. Wall (Eds.), Learning difficulties. New York: Plenum.Google Scholar
  106. Wickens, C., Hutchins, S., Carolan, T., & Cumming, J. (2011). Investigating the impact of training on transfer a meta-analytic approach. SAGE Publications: In Proceedings of the Human Factors and Ergonomics Society Annual Meeting 55(1), 2138–2142.Google Scholar
  107. Wickens, C. D., Hutchins, S., Carolan, T., & Cumming, J. (2013). Effectiveness of part-task training and increasing-difficulty training strategies: A meta-analysis approach. Human Factors, 55(2), 461–470.PubMedCrossRefGoogle Scholar
  108. Wightman, D. C., & Lintern, G. (1985). Part-task training for tracking and manual control. Human Factors, 27, 267–283.Google Scholar
  109. Wixted, J. T., & Carpenter, S. K. (2007). The Wickelgren power law and the Ebbinghaus savings function. Psychological Science, 18(2), 133–134.PubMedCrossRefGoogle Scholar
  110. Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44(1), 75–84.PubMedCrossRefGoogle Scholar
  111. Zendejas, B., Brydges, R., Hamstra, S. J., & Cook, D. A. (2013). State of the evidence on simulation-based training for laparoscopic surgery: A systematic review. Annals of Surgery, 257(4), 586–593.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Edward N. Spruit
    • 1
    • 2
  • Guido P. H. Band
    • 1
    • 2
  • Jaap F. Hamming
    • 3
  • K. Richard Ridderinkhof
    • 4
    • 5
  1. 1.Institute of PsychologyLeiden UniversityLeidenThe Netherlands
  2. 2.Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
  3. 3.Leiden University Medical Center (LUMC)LeidenThe Netherlands
  4. 4.Amsterdam Center for the Study of Adaptive Control and Behavior (ACACIA)University of AmsterdamAmsterdamThe Netherlands
  5. 5.University of Amsterdam Cognitive Science Center Amsterdam (CSCA)AmsterdamThe Netherlands

Personalised recommendations