Psychological Research

, Volume 78, Issue 6, pp 803–820 | Cite as

Effects and mechanisms of working memory training: a review

Review

Abstract

Can cognitive abilities such as reasoning be improved through working memory training? This question is still highly controversial, with prior studies providing contradictory findings. The lack of theory-driven, systematic approaches and (occasionally serious) methodological shortcomings complicates this debate even more. This review suggests two general mechanisms mediating transfer effects that are (or are not) observed after working memory training: enhanced working memory capacity, enabling people to hold more items in working memory than before training, or enhanced efficiency using the working memory capacity available (e.g., using chunking strategies to remember more items correctly). We then highlight multiple factors that could influence these mechanisms of transfer and thus the success of training interventions. These factors include (1) the nature of the training regime (i.e., intensity, duration, and adaptivity of the training tasks) and, with it, the magnitude of improvements during training, and (2) individual differences in age, cognitive abilities, biological factors, and motivational and personality factors. Finally, we summarize the findings revealed by existing training studies for each of these factors, and thereby present a roadmap for accumulating further empirical evidence regarding the efficacy of working memory training in a systematic way.

References

  1. Alloway, T. P. (2009). Working memory, but not IQ, predicts subsequent learning in children with learning difficulties. European Journal of Psychological Assessment, 25(2), 92–98. doi:10.1027/1015-5759.25.2.92.Google Scholar
  2. Alloway, T. P., Bibile, V., & Lau, G. (2013). Computerized working memory training: Can it lead to gains in cognitive skills in students? Computers in Human Behavior, 29, 632–638. doi:10.1016/j.chb.2012.10.023.Google Scholar
  3. Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and verbal working memory. Behavior Genetics, 31(6), 615–624. doi:10.1023/A:1013353613591.PubMedGoogle Scholar
  4. Anguera, J. A., Bernard, J. A., Jaeggi, S. M., Buschkuehl, M., Benson, B. L., Jennett, S., et al. (2012). The effects of working memory resource depletion and training on sensorimotor adaptation. Behavioural Brain Research, 228, 107–115. doi:10.1016/j.bbr.2011.11.040.PubMedPubMedCentralGoogle Scholar
  5. Bäckman, L., & Nyberg, L. (2013). Dopamine and training-related working-memory improvement. Neuroscience and Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2013.01.014 (in press).
  6. Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., & Bradley, R. H. (2005). Those who have receive: The Matthew effect in early childhood intervention in the home environment. Review of Educational Research, 75(1), 1–26.Google Scholar
  7. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults working memory. Journal of Experimental Psychology: General, 133(1), 83–100.Google Scholar
  8. Bellander, M., Brehmer, Y., Westerberg, H., Karlsson, S., Fürth, D., Bergman, O., et al. (2011). Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement. Neuropsychologia, 49, 1938–1942. doi:10.1016/j.neuropsychologia.2011.03.021.PubMedGoogle Scholar
  9. Bergman, O., Håkansson, A., Westberg, L., Belin, A. C., Sydow, O., Olson, L., Holmberg, B., Fratiglioni, L., Bäckman, L., Eriksson, E., & Nissbrandt, H. (2009). Do polymorphisms in transcription factors LMX1A and LMX1B influence the risk for Parkinson’s disease? Journal of Neural Transmission, 116(3), 333–338. doi:10.1007/s00702-009-0187-z.Google Scholar
  10. Blokland, G. A. M., McMahon, K. L., Thompson, P. M., Martin, N. G., de Zubicaray, G. I., & Wright, M. J. (2011). Heritability of working memory brain activation. The Journal of Neuroscience, 31(30), 10882–10890. doi:10.1523/JNEUROSCI.5334-10.2011.PubMedPubMedCentralGoogle Scholar
  11. Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25(4), 767–778. doi:10.1037/a0020683.PubMedGoogle Scholar
  12. Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6(63), 1–7. doi:10.3389/fnhum.2012.00063.Google Scholar
  13. Brehmer, Y., Westerberg, H., Bellander, M., Fürth, D., Karlsson, S., & Bäckman, L. (2009). Working memory plasticity modulated by dopamine transporter genotype. Neuroscience Letters, 467, 117–120. doi:10.1016/j.neulet.2009.10.018.PubMedGoogle Scholar
  14. Brose, A., Schmiedek, F., Lövden, M., Molenaar, P. C. M., & Lindenberger, U. (2010). Adult age differences in covariation of motivation and working memory performance: Contrasting between-person and within-person findings. Research in Human Development, 7(1), 61–78.Google Scholar
  15. Bueller, J., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J.-K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59, 812–815. doi:10.1016/j.biopsych.2005.09.022.PubMedGoogle Scholar
  16. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. doi:10.1037/0033-295X.97.4.523.PubMedGoogle Scholar
  17. Buschkuehl, M., & Jaeggi, S. M. (2010). Improving intelligence: A literature review. Swiss Medical Weekly, 140(19–20), 266–272.PubMedGoogle Scholar
  18. Carretti, B., Borella, E., & De Beni, R. (2007). Does strategic memory training improve the working memory performance of younger and older adults? Experimental Psychology, 54(4), 311–320. doi:10.1027/1618-3169.54.4.311.PubMedGoogle Scholar
  19. Case, R., Kurland, M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404. doi:10.1016/0022-0965(82)90054-6.Google Scholar
  20. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. doi:10.3758/PBR.17.2.193.Google Scholar
  21. Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542. doi:10.1016/j.intell.2012.07.004.Google Scholar
  22. Cogmed. (2013). Commentary: “Is Working Memory Training Effective? A meta-analytic review”. Retrieved 05/10, 2013. http://www.cogmed.com/commentary-working-memory-training-effective-metaanalytic-review.
  23. Colzato, L. S., van Muijden, J., Band, G. P. H., & Hommel, B. (2011). Genetic modulation of training and transfer in older adults: BDNF Val66Met polymorphism is associated with wider useful field of view. Frontiers in Psychology, 2(199), 1–6. doi:10.3389/fpsyg.2011.00199.Google Scholar
  24. Conway, A. R. A., & Getz, S. J. (2010). Cognitive ability: Does working memory training enhance intelligence? Current Biology, 20(8), R362–R364.PubMedGoogle Scholar
  25. Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 739–786. doi:10.3758/BF03196772.Google Scholar
  26. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. doi:10.1016/j.tics.2003.10.005.PubMedGoogle Scholar
  27. Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.Google Scholar
  28. Craik, F. I. M., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. TRENDS in Cognitive Sciences, 10(3), 131–138. doi:10.1016/j.tics.2006.01.007.PubMedGoogle Scholar
  29. Dahlin, E., Nyberg, L., Bäckman, L., & Stigsdotter Neely, A. (2008a). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. doi:10.1037/a0014296.PubMedGoogle Scholar
  30. Dahlin, E., Stigsdotter Neely, A., Larsson, A., Bäckman, L., & Nyberg, L. (2008b). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512. doi:10.1126/science.1155466.PubMedGoogle Scholar
  31. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19, 450–466.Google Scholar
  32. Deci, E. L., & Ryan, R. M. (2013). Intrinsic Motivation Inventory. Retrieved 06/13, 2013. http://selfdeterminationtheory.org/questionnaires/10-questionnaires/50 (n.d.).
  33. Derakshan, N., & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance. European Psychologist, 14(2), 168–176. doi:10.1027/1016-9040.14.2.168.Google Scholar
  34. Dorbath, L., Hasselhorn, M., & Titz, C. (2011). Aging and executive functioning: A training study on focus-switching. Frontiers in Psychology, 2(257), 1–12. doi:10.3389/fpsyg.2011.00257.Google Scholar
  35. Duckworth, A. L., Quinn, P. D., Lynam, D. R., Loeber, R., & Stouthamer-Loeber, M. (2011). Role of test motivation in intelligence testing. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7716–7720. doi:10.1073/pnas.1018601108.PubMedPubMedCentralGoogle Scholar
  36. Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. TRENDS in Cognitive Sciences, 14(4), 172–179. doi:10.1016/j.tics.2010.01.004.PubMedGoogle Scholar
  37. Dunlosky, J., & Kane, M. J. (2007). The contributions of strategy use to working memory span: A comparison of strategy assessment methods. The Quarterly Journal of Experimental Psychology, 60(9), 1227–1245. doi:10.1080/17470210600926075.PubMedGoogle Scholar
  38. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269. doi:10.1016/S0092-8674(03)00035-7.PubMedGoogle Scholar
  39. Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999a). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge: Cambridge University Press.Google Scholar
  40. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999b). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. doi:10.1037/0096-3445.128.3.309.Google Scholar
  41. Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory: Extraordinary feats of memory can be matched or surpassed by people with average memories that have been improved by training. American Scientist, 70(6), 607–615.PubMedGoogle Scholar
  42. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. doi:10.1037/0033-295X.102.2.211.PubMedGoogle Scholar
  43. Feldman Barrett, L., Tugade, M. M., & Engle, R. W. (2004). Individual difference in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553–573. doi:10.1037/0033-2909.130.4.553.Google Scholar
  44. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. doi:10.1016/0022-3956(75)90026-6.PubMedGoogle Scholar
  45. Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137(2), 201–225. doi:10.1037/0096-3445.137.2.201.Google Scholar
  46. Friling, S., Andersson, E., Thompson, L. H., Jönsson, M. E., Hebsgaard, J. B., Nanou, E., et al. (2009). Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7613–7618. doi:10.1073/pnas.0902396106.PubMedPubMedCentralGoogle Scholar
  47. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.Google Scholar
  48. Gibson, B. S., Gondoli, D. M., Kronenberger, W. G., Johnson, A. C., Steeger, C. M., & Morrisey, R. A. (2013). Exploration of an adaptive training regimen that can target the secondary memory component of working memory capacity. Memory & Cognition, 41(5), 726–737. doi:10.3758/s13421-013-0295-8.Google Scholar
  49. Gibson, B. S., Kronenberger, W. G., Gondoli, D. M., Johnson, A. C., Morrisey, R. A., & Steeger, C. M. (2012). Component analysis of simple span vs. complex span adaptive working memory exercises: A randomized, controlled trial. Journal of Applied Research in Memory and Cognition, 1(3), 179–184. doi:10.1016/j.jarmac.2012.06.005.PubMedPubMedCentralGoogle Scholar
  50. Glenberg, A. M., & Lehmann, T. S. (1980). Spacing repetitions over 1 week. Memory & Cognition, 8(6), 528–538. doi:10.3758/BF03213772.Google Scholar
  51. Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables can humans process? Psychological Science, 16(1), 70–76. doi:10.1111/j.0956-7976.2005.00782.x Google Scholar
  52. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23(17), 6690–6694.PubMedGoogle Scholar
  53. Heinz, A., Goldman, D., Jones, D. W., Palmour, R., Hommer, D., Gorey, J. G., et al. (2000). Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology, 22(2), 133–139. doi:10.1016/S0893-133X(99)00099-8.PubMedGoogle Scholar
  54. Heinzel, S., Schulte, S., Onken, J., Duong, Q.-L., Riemer, T. G., Heinz, A., Rapp, M. A. (2013). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Aging, Neuropsychology, and Cognition. doi: 10.1080/13825585.2013.790338 (in press).
  55. Hidi, S. (2006). Interest—A unique motivational variable. Educational Research Review, 1(2), 69–82. doi:10.1016/j.edurev.2006.09.001.Google Scholar
  56. Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15. doi:10.1111/j.1467-7687.2009.00848.x.PubMedGoogle Scholar
  57. Holmes, J., Gathercole, S. E., Place, M., Dunning, D. L., Hilton, K., & Elliott, J. (2010). Working memory deficits can be overcome: Impacts of training and medication on working memory in children with ADHD. Applied Cognitive Psychology, 24(6), 827–836. doi:10.1002/acp.1589.Google Scholar
  58. Houben, K., Wiers, R. W., & Jansen, A. (2011). Getting a grip on drinking behavior: Training working memory to reduce alcohol abuse. Psychological Science, 22(7), 968–975. doi:10.1177/0956797611412392.PubMedGoogle Scholar
  59. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W., J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. doi: 10.1073/pnas.0801268105.
  60. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi:10.1016/j.intell.2010.09.001.Google Scholar
  61. Jausovec, N., & Jausovec, K. (2012). Working memory training: Improving intelligence—changing brain activity. Brain and Cognition, 79, 96–106. doi:10.1016/j.bandc.2012.02.007.PubMedGoogle Scholar
  62. Karbach, J. (2008). Potential and Limits of Executive Control Training. Age Differences in the Near and Far Transfer of Task-Switching Training. Universität des Saarlandes, Saarland, Germany. Retrieved from http://scidok.sulb.uni-saarland.de/volltexte/2008/1772/.
  63. Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. doi:10.1111/j.1467-7687.2009.00846.x.PubMedGoogle Scholar
  64. Karbach, J., Mang, S., & Kray, J. (2010). Transfer of task-switching training in older age: The role of verbal processes. Psychology and Aging, 25(3), 677–683. doi:10.1037/a0019845.PubMedGoogle Scholar
  65. Kliegl, R., Smith, J., & Baltes, P. B. (1990). On the locus and process of magnification of age differences during mnemonic training. Developmental Psychology, 26, 894–904. doi:10.1037/0012-1649.26.6.894.Google Scholar
  66. Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi:10.1016/j.tics.2010.05.002.PubMedGoogle Scholar
  67. Klingberg, T. (2012). Is working memory capacity fixed? Journal of Applied Research in Memory and Cognition, 1(3), 194–196. doi:10.1016/j.jarmac.2012.07.004.Google Scholar
  68. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD—A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186. doi:10.1097/00004583-200502000-00010.PubMedGoogle Scholar
  69. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791. doi:10.1076/jcen.24.6.781.8395.PubMedGoogle Scholar
  70. Kramer, A. F., & Willis, S. L. (2002). Enhancing the cognitive vitality of older adults. Current Directions in Psychological Science, 11(5), 173–177.Google Scholar
  71. Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability (is little more than) working-memory capacity?! Intelligence, 14, 389–433. doi:10.1016/S0160-2896(05)80012-1.Google Scholar
  72. Langer, N., von Bastian, C. C., Wirz, H., Oberauer, K., & Jäncke, L. (2013). The effects of working memory training on functional brain network efficiency. Cortex, 49(9), 2424–2438. doi:10.1016/j.cortex.2013.01.008.Google Scholar
  73. Li, S.-C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742. doi:10.1037/a0014343.PubMedGoogle Scholar
  74. Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual n-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20, 135–141. doi:10.3758/s13423-012-0335-6.Google Scholar
  75. Lövden, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. doi:10.1037/a0020080.PubMedGoogle Scholar
  76. Lövden, M., Brehmer, Y., Li, S.-C., & Lindenberger, U. (2012). Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in Human Neuroscience, 6(141). doi:10.3389/fnhum.2012.00141.
  77. Lu, B., & Gottschalk, W. (2000). Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Progress in Brain Research, 128, 231–241. doi:10.1016/S0079-6123(00)28020-5.
  78. Lundqvist, A., Grundström, K., Samuelsson, K., & Rönnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24(10), 1173–1183. doi:10.3109/02699052.2010.498007.PubMedGoogle Scholar
  79. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19, 504–522. doi:10.1007/s11065-009-9119-9.PubMedPubMedCentralGoogle Scholar
  80. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairment in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 44(4), 377–384. doi:10.1097/01.chi.0000153228.72591.73.PubMedGoogle Scholar
  81. McArdle, J. J., & Prindle, J. J. (2008). A latent change score analysis of a randomized clinical trial in reasoning training. Psychology and Aging, 23(4), 702–719. doi:10.1037/a0014349.PubMedGoogle Scholar
  82. McCarney, R., Warner, J., Iliffe, S., van Haselen, R., Griffin, M., & Fisher, P. (2007). The Hawthorne effect: A randomised, controlled trial. BMC Medical Research Methodology, 7(30), 1–8. doi:10.1186/1471-2288-7-30.Google Scholar
  83. McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323, 800–802. doi:10.1126/science.1166102.PubMedGoogle Scholar
  84. McNamara, D. S., & Scott, J. L. (2001). Working memory capacity and strategy use. Memory & Cognition, 29(1), 10–17.Google Scholar
  85. Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.PubMedGoogle Scholar
  86. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18, 46–60. doi:10.3758/s13423-010-0034-0.Google Scholar
  87. Mumford, M. D., Constanza, D. P., Baughman, W. A., Threlfall, K. V., & Fleishman, E. A. (1994). Influence of abilities on performance during practice: Effects of massed and distributed practice. Journal of Educational Psychology, 86(1), 134–144. doi:10.1037/0022-0663.86.1.134.Google Scholar
  88. Nakatani, T., Kumai, M., Mizuhara, E., Minaki, Y., & Ono, Y. (2010). Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Developmental Biology, 339(1), 101–113. doi:10.1016/j.ydbio.2009.12.017.PubMedGoogle Scholar
  89. Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411–421. doi:10.1037//0278-7393.28.3.411.PubMedGoogle Scholar
  90. Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(2), 197–214. doi:10.1037/0278-7393.32.2.197.PubMedGoogle Scholar
  91. Oberauer, K. (2009). Design for a working memory. In B. Ross (Ed.), The psychology of learning and motivation: advances in research and theory (Vol. 51). New York: Academic Press.Google Scholar
  92. Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779–819. doi:10.3758/s13423-012-0272-4.Google Scholar
  93. Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, J. M. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 49–75). New York: Oxford University Press.Google Scholar
  94. Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167–193.Google Scholar
  95. Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641–652. doi:10.1016/j.intell.2008.01.007.Google Scholar
  96. Oken, B. S., Flegal, K., Zajdel, D., Kishiyama, S., Haas, M., & Peters, D. (2008). Expectancy effect: Impact of pill administration on cognitive performance in healthy seniors. Journal of Clinical and Experimental Neuropsychology, 30(1), 7–17. doi:10.1080/13803390701775428.PubMedGoogle Scholar
  97. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. doi:10.1038/nn1165.PubMedGoogle Scholar
  98. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465, 775–779. doi:10.1038/nature09042.PubMedPubMedCentralGoogle Scholar
  99. Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320. doi:10.1037//0882-7974.17.2.299.PubMedGoogle Scholar
  100. Penner, I.-K., Vogt, A., Stöcklin, M., Gschwind, L., Opwis, K., & Calabrese, P. (2012). Computerised working memory training in healthy adults: A comparison of two different training schedules. Neuropsychological Rehabilitation, 22(5), 716–733. doi:10.1080/09602011.2012.686883.PubMedGoogle Scholar
  101. Raven, J. C. (1990). Advanced progressive matrices: sets I, II. Oxford: Oxford Psychologists Press.Google Scholar
  102. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. doi:10.1037/a0029082.Google Scholar
  103. Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813–822. doi:10.1037/a0023631.PubMedGoogle Scholar
  104. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. doi:http://www.ncbi.nlm.nih.gov/pubmed/11392867.PubMedGoogle Scholar
  105. Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience, 6(166). doi:10.3389/fnhum.2012.00166.
  106. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.Google Scholar
  107. Schmiedek, F., Lövden, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2(27), 1–10. doi:10.3389/fnagi.2010.00027.Google Scholar
  108. Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. doi:10.1037/0096-3445.136.3.414.Google Scholar
  109. Schweizer, S., Hampshire, A., & Dalgleish, T. (2011). Extending brain-training to the affective domain: Increasing cognitive and affective executive control through emotional working memory training. PLoS ONE, 6(9), e24372. doi:10.1371/journal.pone.0024372.PubMedPubMedCentralGoogle Scholar
  110. Shaywitz, B. A., Holford, T. R., Holahan, J. M., Fletcher, J. M., Stuebing, K. K., Francis, D. J., et al. (1995). A Matthew effect for IQ but not for reading: Results from a longitudinal study. Reading Research Quarterly, 30(4), 894–906.Google Scholar
  111. Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1(3), 185–193. doi:10.1016/j.jarmac.2012.06.003.Google Scholar
  112. Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3–4), 245–276.Google Scholar
  113. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. doi:10.1037/a0027473.PubMedGoogle Scholar
  114. Shiran, A., & Breznitz, Z. (2011). The effect of cognitive training on recall range and speed of information processing in the working memory of dyslexic and skilled readers. Journal of Neurolinguistics, 24, 524–537. doi:10.1016/j.jneuroling.2010.12.001.Google Scholar
  115. Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 26, 7–29.Google Scholar
  116. Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41, 341–357. doi:10.1016/j.intell.2013.05.006.Google Scholar
  117. Studer-Luethi, B., Jaeggi, S. M., Buschkuehl, M., & Perrig, W. J. (2012). Influence of neuroticism and conscientiousness on working memory training outcome. Personality and Individual Differences, 53(1), 44–49. doi:10.1016/j.paid.2012.02.012.
  118. Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—And a little bit more. Intelligence, 30, 261–288.Google Scholar
  119. Swanson, J. M., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., et al. (2000). Dopamine genes and ADHD. Neuroscience and Biobehavioral Reviews, 24(1), 21–25. doi:10.1016/S0149-7634(99)00062-7.PubMedGoogle Scholar
  120. Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., et al. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8(5), e63614. doi:10.1371/journal.pone.0063614.PubMedPubMedCentralGoogle Scholar
  121. Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. The Journal of Neuroscience, 33(19), 8257–8263. doi:10.1523/JNEUROSCI.5348-12.2013.PubMedPubMedCentralGoogle Scholar
  122. Turley-Ames, K. J., & Whitfield, M. M. (2003). Strategy training and working memory task performance. Journal of Memory and Language, 49, 446–468.Google Scholar
  123. Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038–1066. doi:10.1037/0033-2909.133.6.1038.PubMedGoogle Scholar
  124. VanNess, S. H., Owens, M. J., & Kilts, C. D. (2005). The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genetics, 6, 55. doi:10.1186/1471-2156-6-55.PubMedPubMedCentralGoogle Scholar
  125. Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: How to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30, 1322–1337. doi:10.1037/0278-7393.30.6.1322.PubMedGoogle Scholar
  126. Verhaeghen, P., & Marcoen, A. (1996). On the mechanisms of plasticity in young and older adults after instruction in the method of loci: Evidence for an amplification model. Psychology and Aging, 11(1), 164–178. doi:10.1037/0882-7974.11.1.164.PubMedGoogle Scholar
  127. von Bastian, C. C., & Eschen, A. (2013). Impact of training procedures on working memory training and transfer effects (Manuscript in preparation).Google Scholar
  128. von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013a). Effects of working memory training in young and old adults. Memory & Cognition, 41(4), 611–624. doi:10.3758/s13421-012-0280-7.Google Scholar
  129. von Bastian, C. C., Locher, A., & Ruflin, M. (2013). Tatool: a Java-based open-source programming framework for psychological studies. Behavior Research Methods, 45(1), 108–115. doi:10.3758/s13428-012-0224-y.Google Scholar
  130. von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi:10.1016/j.jml.2013.02.002.Google Scholar
  131. Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory—Is younger, better? Developmental Review, 32, 360–387. doi:10.1016/j.dr.2012.07.001.Google Scholar
  132. Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M.-L., Bartfai, A., et al. (2007). Computerized working memory training after stroke—A pilot study. Brain Injury, 21(1), 21–29. doi:10.1080/02699050601148726.PubMedGoogle Scholar
  133. Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142, 108–118. doi:10.1016/j.actpsy.2012.11.003.PubMedGoogle Scholar
  134. Wright, M. J., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., et al. (2001). Genetics of cognition: Outline of a collaborative twin study. Twin Research, 4(1), 48–56. doi:10.1375/1369052012146.PubMedGoogle Scholar
  135. Yesavage, J. A., & Jacob, R. (1984). Effects of relaxation and mnemonics on memory, attention and anxiety in the elderly. Experimental Aging Research, 10(4), 211–214. doi:10.1080/03610738408258467.PubMedGoogle Scholar
  136. Yesavage, J. A., Sheikh, J. I., Friedman, L., & Tanke, E. (1990). Learning mnemonics: Roles of aging and subtle cognitive impairment. Psychology and Aging, 5(1), 133–137. doi:10.1037/0882-7974.5.1.133.PubMedGoogle Scholar
  137. Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2013). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology. doi:10.1037/a0032982 (in press).

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Psychology, University Research Priority Program “Dynamics of Healthy Aging”University of ZurichZurichSwitzerland

Personalised recommendations