Psychological Research

, Volume 78, Issue 3, pp 423–438 | Cite as

Auditory spatial negative priming: What is remembered of irrelevant sounds and their locations?

Original Article

Abstract

The categorization and identification of previously ignored visual or auditory stimuli is typically slowed down—a phenomenon that has been called the negative priming effect and can be explained by the episodic retrieval of response-inadequate prime information and/or an inhibitory model. A similar after-effect has been found in visuospatial tasks: participants are slowed down in localizing a visual stimulus that appears at a previously ignored location. In the auditory modality, however, such an after-effect of ignoring a sound at a specific location has never been reported. Instead, participants are impaired in their localization performance when the sound at the previously ignored location changes identity, a finding which is compatible with the so-called feature-mismatch hypothesis. Here, we describe the properties of auditory spatial in contrast to visuospatial negative priming and report two experiments that specify the nature of this auditory after-effect. Experiment 1 shows that the detection of identity-location mismatches is a genuinely auditory phenomenon that can be replicated even when the sound sources are invisible. Experiment 2 reveals that the detection of sound-identity mismatches in the probe depends on the processing demands in the prime. This finding implies that the localization of irrelevant sound sources is not the inevitable consequence of processing the auditory prime scenario but depends on the difficulty of the target search process among distractor sounds.

References

  1. Alain, C., & Arnott, S. R. (2000). Selectively attending to auditory objects. Frontiers in bioscience : A journal and virtual library, 5, 202–212.CrossRefGoogle Scholar
  2. Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin & Review, 5(3), 482–489. doi:10.3758/BF03208826.CrossRefGoogle Scholar
  3. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sounds. London: The MIT press.Google Scholar
  4. Broadbent, D. E. (1958). Perception and communication. New York: Oxford University Press.CrossRefGoogle Scholar
  5. Bronkhorst, A. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica United with Acustica, 86, 117–128.Google Scholar
  6. Buchner, A., Zabal, A., & Mayr, S. (2003). Auditory, visual, and cross-modal negative priming. Psychonomic Bulletin & Review, 10(4), 917–923. doi:10.3758/BF03196552.CrossRefGoogle Scholar
  7. Buckolz, E., Avramidis, C., & Fitzgeorge, L. (2008). Prime-trial processing demands and their impact on distractor processing in a spatial negative priming task. Psychological Research, 72(3), 235–248.PubMedCrossRefGoogle Scholar
  8. Buckolz, E., Edgar, C., Kajaste, B., Lok, M., & Khan, M. (2012). Inhibited prime-trial distractor responses solely produce the visual spatial negative priming effect. Attention, Perception, & Psychophysics, 74(8), 1632–1643. doi:10.3758/s13414-012-0366-0.CrossRefGoogle Scholar
  9. Buckolz, E., Goldfarb, A., & Khan, M. (2004). The use of a distractor-assigned response slows later responding in a location negative priming task. Perception & Psychophysics, 66(5), 837–845. doi:10.3758/BF03194977.CrossRefGoogle Scholar
  10. Chao, H.-F. (2009). Revisiting the role of probe distractors in negative priming: Location negative priming is observed when probe distractors are consistently absent. Attention, Perception, & Psychophysics, 71(5), 1072–1082. doi:10.3758/APP.71.5.1072.CrossRefGoogle Scholar
  11. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 19, 988–992. doi:10.1121/1.1907229.Google Scholar
  12. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  13. Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 529–553. doi:10.1037/0096-1523.11.5.529.PubMedGoogle Scholar
  14. Driver, J., & Baylis, G. C. (1993). Cross-modal negative priming and interference in selective attention. Bulletin of the Psychonomic Society, 31(1), 45–48.CrossRefGoogle Scholar
  15. Eckstein, M. P. (2011). Visual search: A retrospective. Journal of Vision 11(5), Art no. 14. doi:10.1167/11.5.14.
  16. Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 101(2–3), 293–313. doi:10.1016/S0001-6918(99)00009-8.PubMedCrossRefGoogle Scholar
  17. Eriksen, C. W., Coles, M. G., Morris, L. R., & O’Hara, W. P. (1985). An electromyographic examination of response competition. Bulletin of the Psychonomic Society, 23(3), 165–168. doi:10.1027/0269-8803.19.4.330.CrossRefGoogle Scholar
  18. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, 39(2), 175–191. doi:10.3758/BF03193146.PubMedCrossRefGoogle Scholar
  19. Fitzgeorge, L., Buckolz, E., & Khan, M. (2011). Recently inhibited responses are avoided for both masked and nonmasked primes in a spatial negative priming task. Attention, Perception, & Psychophysics, 73(5), 1435–1452. doi:10.3758/s13414-011-0125-7.CrossRefGoogle Scholar
  20. Frings, C., Bader, R., & Spence, C. (2008). Selection in touch: negative priming with tactile stimuli. Perception & Psychophysics, 70(3), 516–523. doi:10.3758/PP.70.3.516.CrossRefGoogle Scholar
  21. Guy, S., Buckolz, E., & Khan, M. (2006). The locus of location repetition latency effects. Canadian Journal of Experimental Psychology, 60(4), 307–318.PubMedCrossRefGoogle Scholar
  22. Hairston, W. D., Wallace, M. T., Vaughan, J. W., Stein, B. E., Norris, J. L., & Schirillo, J. A. (2003). Visual localization ability influences cross-modal bias. Journal of Cognitive Neuroscience, 15(1), 20–29. doi:10.1162/089892903321107792.PubMedCrossRefGoogle Scholar
  23. Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843. doi:10.1121/1.1639908.PubMedCrossRefGoogle Scholar
  24. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  25. Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5(1–2), 183–216. doi:10.1080/713756773.CrossRefGoogle Scholar
  26. Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory mechanisms of attention, memory, and language (pp. 53–112). San Diego: Academic Press.Google Scholar
  27. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: object-specific integration of information. Cognitive Psychology, 24(2), 175–219. doi:10.1016/0010-0285(92)90007-O.PubMedCrossRefGoogle Scholar
  28. Leuthold, H., & Schröter, H. (2006). Electrophysiological evidence for response priming and conflict regulation in the auditory Simon task. Brain Research, 1097(1), 167–180. doi:10.1016/j.brainres.2006.04.055.PubMedCrossRefGoogle Scholar
  29. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527.CrossRefGoogle Scholar
  30. Mayr, S., & Buchner, A. (2006). Evidence for episodic retrieval of inadequate prime responses in auditory negative priming. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 932–943. doi:10.1037/0096-1523.32.4.932.PubMedGoogle Scholar
  31. Mayr, S., & Buchner, A. (2007). Negative priming as a memory phenomenon: A review of 20 years of negative priming research. Journal of Psychology, 215(1), 35–51. doi:10.1027/0044-3409.215.1.35.Google Scholar
  32. Mayr, S., & Buchner, A. (2010). Episodic retrieval processes take place automatically in auditory negative priming. European Journal of Cognitive Psychology, 22(8), 1192–1221. doi:10.1080/09541440903409808.CrossRefGoogle Scholar
  33. Mayr, S., & Buchner, A. (2013). Intact episodic retrieval in older adults: Evidence from an auditory negative priming task. Experimental Aging Research (in press).Google Scholar
  34. Mayr, S., Buchner, A., & Dentale, S. (2009a). Prime retrieval of motor responses in negative priming. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 408–423. doi:10.1037/0096-1523.35.2.408.PubMedGoogle Scholar
  35. Mayr, S., Buchner, A., Möller, M., & Hauke, R. (2011a). Spatial and identity negative priming in audition: Evidence of feature binding in auditory spatial memory. Attention, Perception, & Psychophysics, 73(6), 1710–1732. doi:10.3758/s13414-011-0138-2.CrossRefGoogle Scholar
  36. Mayr, S., Hauke, R., & Buchner, A. (2009b). Auditory location negative priming: A case of feature mismatch. Psychonomic Bulletin & Review, 16(5), 845–849. doi:10.3758/PBR.16.5.845.CrossRefGoogle Scholar
  37. Mayr, S., Möller, M., & Buchner, A. (2011b). Evidence of vocal and manual event files in auditory negative priming. Experimental Psychology, 58(5), 353–360. doi:10.1027/1618-3169/a000102.PubMedCrossRefGoogle Scholar
  38. Milliken, B., Tipper, S. P., Houghton, G., & Lupianez, J. (2000). Attending, ignoring, and repetition: On the relation between negative priming and inhibition of return. Perception & Psychophysics, 62(6), 1280–1296. doi:10.3758/BF03212130.CrossRefGoogle Scholar
  39. Milliken, B., Tipper, S. P., & Weaver, B. (1994). Negative priming in a spatial localization task: Feature mismatching and distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 624–646.Google Scholar
  40. Möller, M., Mayr, S., & Buchner, A. (2013). Target localization among concurrent sound sources: No evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75(1), 132–144. doi:10.3758/s13414-012-0380-2.CrossRefGoogle Scholar
  41. Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. The Quarterly Journal of Experimental Psychology, 11, 56–60. doi:10.1080/17470215908416289.CrossRefGoogle Scholar
  42. Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: Steady state or decay? Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(3), 565–576. doi:10.1037/0278-7393.18.3.565.CrossRefGoogle Scholar
  43. Neill, W. T., Valdes, L. A., Terry, K. M., & Gorfein, D. S. (1992). Persistence of negative priming: II. Evidence for episodic trace retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(5), 993–1000. doi:10.1037/0278-7393.18.5.993.PubMedCrossRefGoogle Scholar
  44. Noble, W., & Perrett, S. (2002). Hearing speech against spatially separate competing speech versus competing noise. Perception & Psychophysics, 64(8), 1325–1336. doi:10.3758/BF03194775.CrossRefGoogle Scholar
  45. Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: Identity mismatching, not distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 613–623. doi:10.1037/0096-1523.20.3.613.PubMedGoogle Scholar
  46. Pick, H. L., Warren, D. H., & Hay, J. C. (1969). Sensory conflict in judgments of spatial direction. Perception & Psychophysics, 6(4), 203–205. doi:10.3758/BF03207017.CrossRefGoogle Scholar
  47. Rothermund, K., Wentura, D., & De Houwer, J. (2005). Retrieval of incidental stimulus–response associations as a source of negative priming. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(3), 482–495. doi:10.1037/0278-7393.31.3.482.PubMedCrossRefGoogle Scholar
  48. Shackleton, T. M., Meddis, R., & Hewitt, M. J. (1994). The role of binaural and fundamental frequency difference cues in the identification of concurrently presented vowels. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 47A(3), 545–563. doi:10.1080/14640749408401127.CrossRefGoogle Scholar
  49. Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 37A(4), 571–590. doi:10.1080/14640748508400920.CrossRefGoogle Scholar
  50. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 54A(2), 321–343. doi:10.1080/713755969.CrossRefGoogle Scholar
  51. Tipper, S. P., Brehaut, J. C., & Driver, J. (1990). Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 492–504. doi:10.1037//0096-1523.16.3.492.PubMedGoogle Scholar
  52. Tipper, S. P., & Cranston, M. (1985). Selective attention and priming: Inhibitory and facilitatory effects of ignored primes. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 37A(4), 591–611. doi:10.1080/14640748508400921.CrossRefGoogle Scholar
  53. Tipper, S. P., Weaver, B., & Milliken, B. (1995). Spatial negative priming without mismatching: Comment on Park and Kanwisher (1994). Journal of Experimental Psychology: Human Perception and Performance, 21(5), 1220–1229. doi:10.1037/0096-1523.21.5.1220.Google Scholar
  54. Treisman, A. M. (1960). Contextual cues in selective listening. The Quarterly Journal of Experimental Psychology, 12, 242–248. doi:10.1080/17470216008416732.CrossRefGoogle Scholar
  55. Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 731–751.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Experimentelle PsychologieHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations