Advertisement

Psychological Research

, Volume 78, Issue 4, pp 465–482 | Cite as

A test of the embodied simulation theory of object perception: potentiation of responses to artifacts and animals

  • Heath E. Matheson
  • Nicole C. White
  • Patricia A. McMullen
Original Article

Abstract

Theories of embodied object representation predict a tight association between sensorimotor processes and visual processing of manipulable objects. Previous research has shown that object handles can ‘potentiate’ a manual response (i.e., button press) to a congruent location. This potentiation effect is taken as evidence that objects automatically evoke sensorimotor simulations in response to the visual presentation of manipulable objects. In the present series of experiments, we investigated a critical prediction of the theory of embodied object representations that potentiation effects should be observed with manipulable artifacts but not non-manipulable animals. In four experiments we show that (a) potentiation effects are observed with animals and artifacts; (b) potentiation effects depend on the absolute size of the objects and (c) task context influences the presence/absence of potentiation effects. We conclude that potentiation effects do not provide evidence for embodied object representations, but are suggestive of a more general stimulus–response compatibility effect that may depend on the distribution of attention to different object features.

Keywords

Transcranial Magnetic Stimulation Attentional Bias Simon Effect Compatibility Effect Object Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflict of interest

The authors report no conflicts of interest in the preparation of the manuscript.

References

  1. Allport, D. A. (1985). Distributed memory, modular subsystems and dysphasia. In S. D. Newman & R. Epstein (Eds.), Current perspectives in dysphasia (pp. 207–244). New York: Churchill Livingstone.Google Scholar
  2. Anderson, S. J., Yamagishi, N., & Karavia, V. (2002). Attentional processes link perception and action. Proceedings of the Royal Society of London, 269(1497), 1225–1232.CrossRefGoogle Scholar
  3. Baayen, R. H. (2008). Analyzing linguistic data: a practical introduction to statistics using R. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Barsalou, L. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London, 358, 1177–1187.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barsalou, L. (2008). Grounded cognition. The Annual Review of Psychology, 59, 617–645.CrossRefGoogle Scholar
  6. Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. http://cran.r-project.org/web/packages/lme4/index.html. Accessed 1 Aug 2012.
  7. Bub, D. N., & Masson, M. E. J. (2010). Grasping beer mugs: on the dynamics of alignment effects induced by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 341–358.PubMedGoogle Scholar
  8. Bub, D. N., Masson, M. E. J., & Cree, G. S. (2008). Evocation of functional and volumetric gestural knowledge by objects and words. Cognition, 106, 27–58.PubMedCrossRefGoogle Scholar
  9. Buccino, G., Sato, M., Cattaneo, L., Rodà, F., & Riggio, L. (2009). Broken affordances, broken objects: a TMS study. Neuropsychologia, 47, 3074–3078.PubMedCrossRefGoogle Scholar
  10. Cate, A., Goodale, M., & Köhler, S. (2011). The role of apparent size in building- and object-specific regions of ventral visual cortex. Brain Research, 4, 09–122.Google Scholar
  11. Chao, L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. NeuroImage, 12, 478–484.PubMedCrossRefGoogle Scholar
  12. Cho, D., & Proctor, R. W. (2010). The object-based Simon-effect: grasping affordance or relative location of the graspable part? Journal of Experimental Psychology: Human Perception and Performance, 36(4), 853–861.PubMedGoogle Scholar
  13. Cho, D., & Proctor, R. W. (2011). Correspondence effects for objects with opposing left and right protrusions. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 737–749.PubMedGoogle Scholar
  14. Cho, D., & Proctor, R. W. (2012). Object-based correspondence effects for action-relevant and surface-property judgments with keypress responses: evidence for a basis in spatial coding. Psychological Research,. doi: 10.1007/s00426-012-0458-4.PubMedGoogle Scholar
  15. Craighero, L., Fadiga, L., Umiltà, C., & Rizzolatti, G. (1996). Evidence for visuomotor priming effect. NeuroReport, 8, 347–349.PubMedCrossRefGoogle Scholar
  16. Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Science, 15(11), 512–519.CrossRefGoogle Scholar
  17. Gerlach, C., Law, I., & Paulson, O. (2002). When action turns into words: activation of motor-based knowledge during categorization of manipulable objects. Journal of Cognitive Neuroscience, 14(8), 1230–1239.PubMedCrossRefGoogle Scholar
  18. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  19. Helbig, H., Graf, M., & Keifer, M. (2006). The role of action representations in visual object recognition. Experimental Brain Research, 174, 221–228.PubMedCrossRefGoogle Scholar
  20. Helbig, H., Steinwender, J., Graf, M., & Kiefer, M. (2010). Action observation can prime visual object recognition. Experimental Brain Research, 200, 251–258.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1257–1270.Google Scholar
  22. Hommel, B. (1993). Inverting the Simon effect by intention. Psychological Research, 55, 270–279.CrossRefGoogle Scholar
  23. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.PubMedCrossRefGoogle Scholar
  24. Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision Research, 46(11), 1762–1776.Google Scholar
  25. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility--a model and taxonomy. Psychological review, 97(2), 253–270. Google Scholar
  26. Kovic, V., Plunkett, K., & Westermann, G. (2009a). Eye-tracking study of animate objects. Psihologija, 42(3), 307–327.CrossRefGoogle Scholar
  27. Kovic, V., Plunkett, K., & Westermann, G. (2009b). Eye-tracking study of inanimate objects. Psihologija, 42(4), 417–436.CrossRefGoogle Scholar
  28. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: the embodied mind and its challenge to western thought. New York: Basic Books.Google Scholar
  29. Lawrence, MA. (2012). ez: Easy analysis and visualization of factorial experiments. R package version 4.1-1. http://CRAN.R-project.org/package=ez. Accessed 1 Aug 2012.
  30. Masson, M. E. J., Bub, D. N., & Breuer, A. T. (2011). Priming of reach and grasp actions by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1470–1484.PubMedGoogle Scholar
  31. McMullen, P., & Jolicoeur, P. (1990). The spatial frame of reference in object naming and discrimination of left-right reflections. Memory and Cognition, 18(1), 99–115.PubMedCrossRefGoogle Scholar
  32. Mounoud, P., Dushcherer, K., Moy, G., & Perraudin, S. (2007). The influence of action perception on object recognition: a developmental study. Developmental Science, 10(6), 836–852.PubMedCrossRefGoogle Scholar
  33. Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of the monkey parietal area AIP. Journal of Neurophysiology, 83, 2580–2601.PubMedGoogle Scholar
  34. Newman, A. J., Tremblay, A., Nichols, E. S., Neville, H. J., & Ullman, M. T. (2012). The influence of language proficiency on brain activation in native and late learners of English: an ERP study. Journal of Cognitive Neuroscience, 24(5), 1205–1223.PubMedCrossRefGoogle Scholar
  35. Olejnik, S., & Algina, J. (2003). Generalized Eta and omega squared statistics: measures of effect size for some common research designs. Psychological Methods, 8(4), 434–447.PubMedCrossRefGoogle Scholar
  36. Pellicano, A., Iani, C., Borghi, A. M., Rubichi, S., & Nicoletti, R. (2010). Simon-like and functional affordance effects with tools: the effects of object perceptual discrimination and object action state. The Quarterly Journal of Experimental Psychology, 63(11), 2190–2201.PubMedCrossRefGoogle Scholar
  37. Phillips, J. C., & Ward, R. (2002). S-R correspondence effects of irrelevant visual affordance: time course and specificity of response activation. Visual Cognition, 9, 540–558.CrossRefGoogle Scholar
  38. Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. European Journal of Neuroscience, 21(3), 793–797.Google Scholar
  39. Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 510–532.PubMedCrossRefGoogle Scholar
  40. Reed, C. L., Grubb, J. D., & Steele, C. (2006). Hands up: attentional prioritization of space near the hand. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 166–177.PubMedGoogle Scholar
  41. Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20, 185–195.Google Scholar
  42. Shapiro, L. (2011). Embodied Cognition. New York, NY: Taylor & Francis.Google Scholar
  43. Simon, J. R. (1969). Reactions towards the source of stimulation. Journal of Experimental Psychology, 81, 174–176.PubMedCrossRefGoogle Scholar
  44. Symes, E., Ellis, R., & Tucker, M. (2007). Visual object affordances: object orientation. Acta Psychologia, 124, 238–255.CrossRefGoogle Scholar
  45. R Core Team (2012). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. Accessed 1 Aug 2012.
  46. Tipper, S. P., Paul, M. A., & Hayes, A. E. (2006). Vision-for-action: the effects of object property discrimination and action state on affordance compatibility effects. Psychonomic Bulletin and Review, 3(3), 493–498.CrossRefGoogle Scholar
  47. Tremblay, R., & Ransijn, J. (2011). LMERConvenienceFunctions: a suite of functions to back-fit fixed effects and forward-fit random effects, as well as other miscellaneous functions. R Package Version, 1(6), 7.Google Scholar
  48. Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830–846.PubMedGoogle Scholar
  49. Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185–203.PubMedCrossRefGoogle Scholar
  50. Vainio, L., Ellis, R., & Tucker, M. (2007). The role of visual attention in action priming. The Quarterly Journal of Experimental Psychology, 60(2), 241–261.PubMedCrossRefGoogle Scholar
  51. Vu, K. P. (2007). Influences on the Simon effect of prior practice with spatially incompatible mappings: transfer within and between horizontal and vertical dimensions. Memory and Cognition, 35(6), 1463–1471.PubMedCrossRefGoogle Scholar
  52. Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58, 475–482.Google Scholar
  53. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625–636.PubMedCrossRefGoogle Scholar
  54. Witt, J., Kemmerer, D., Linkenauger, S., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21(9), 1215–1219.PubMedCrossRefGoogle Scholar
  55. Yang, S.-J., & Beilock, S. L. (2011). Seeing and doing: ability to act moderates orientation effects in object perception. The Quarterly Journal of Experimental Psychology, 64(4), 639–648.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Heath E. Matheson
    • 1
  • Nicole C. White
    • 2
  • Patricia A. McMullen
    • 1
  1. 1.Department of PsychologyDalhousie University, Life Sciences CenterHalifaxCanada
  2. 2.Department of PsychologyUniversity of TorontoTorontoCanada

Personalised recommendations