Psychological Research

, Volume 78, Issue 4, pp 494–505 | Cite as

Movement planning and attentional control of visuospatial working memory: evidence from a grasp-to-place task

  • M. A. Spiegel
  • D. Koester
  • T. Schack
Original Article


In this study, we have investigated the influence of available attentional resources on the dual-task costs of implementing a new action plan and the influence of movement planning on the transfer of information into visuospatial working memory. To approach these two questions, we have used a motor–memory dual-task design in which participants grasped a sphere and planned a placing movement toward a left or right target according to a directional arrow. Subsequently, they encoded a centrally presented memory stimulus (4 × 4 symbol matrix). While maintaining the information in working memory, a visual stay/change cue (presented on the left, center or right) either confirmed or reversed the planned movement direction. That is, participants had to execute either the prepared or the re-planned movement and finally reported the symbols at leisure. The results show that both, shifts of spatial attention required to process the incongruent stay/change cues and movement re-planning, constitute processing bottlenecks as they both reduced visuospatial working memory performance. Importantly, the spatial attention shifts and movement re-planning appeared to be independent of each other. Further, we found that the initial preparation of the placing movement influenced the report pattern of the central working memory stimulus. Preparing a leftward movement resulted in better memory performance for the left stimulus side, while the preparation of a rightward movement resulted in better memory performance for the right stimulus side. Hence, movement planning influenced the transfer of information into the capacity-limited working memory store. Therefore, our results suggest complex interactions in that the processes involved in movement planning, spatial attention and visuospatial working memory are functionally correlated but not linked in a mandatory fashion.


Movement Planning Spatial Attention Work Memory Attentional Resource Congruent Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the German Research Foundation Grant DFG EXC 277 ‘‘Cognitive Interaction Technology” (CITEC). We thank the two anonymous reviewers for helpful comments on this article and Patricia Land for proofreading.


  1. Allport, D. (1987). Selection for action: Some behavioural and neurophysiological considerations of attention and action. In H. Heuer & A. Sanders (Eds.), Perspectives on perception and action (pp. 395–419). Hillsdale, New York: Erlbaum.Google Scholar
  2. Anllo-Vento, L. (1995). Shifting attention in visual space: the effects of peripheral cueing on brain cortical potentials. The International Journal of Neuroscience, 80(1–4), 353–370.PubMedCrossRefGoogle Scholar
  3. Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: evidence from event-related potentials. Journal of Cognitive Neuroscience, 12(5), 840–847.PubMedCrossRefGoogle Scholar
  4. Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: links, causes and implications for spatial attention. Trends in Cognitive Sciences, 10(3), 124–130.PubMedCrossRefGoogle Scholar
  5. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.PubMedCrossRefGoogle Scholar
  6. Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology, 24(3), 780–790.PubMedGoogle Scholar
  7. Awh, E., Smith, E., & Jonides, J. (1995). Human rehearsal processes and the frontal lobes: PET evidence. In J. Grafman, K. Holyoak, & F. Boller (Eds.), Annals of the New York Academy of Sciences (Vol. 769, pp. 97–119)., Structure and functions of the human prefrontal cortex New York: New York Academy of Sciences.Google Scholar
  8. Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon Press.Google Scholar
  9. Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.PubMedCrossRefGoogle Scholar
  10. Baker, K. S., Mattingley, J. B., Chambers, C. D., & Cunnington, R. (2011). Attention and the readiness for action. Neuropsychologia, 49(12), 3303–3313. doi: 10.1016/j.neuropsychologia.2011.08.003.PubMedCrossRefGoogle Scholar
  11. Baldauf, D., & Deubel, H. (2010). Attentional landscapes in reaching and grasping. Vision Research, 50(11), 999–1013. doi: 10.1016/j.visres.2010.02.008.PubMedCrossRefGoogle Scholar
  12. Baldauf, D., Wolf, M., & Deubel, H. (2006). Deployment of visual attention before sequences of goal-directed hand movements. Vision Research, 46(26), 4355–4374.PubMedCrossRefGoogle Scholar
  13. Bathurst, K., & Kee, D. W. (1994). Finger-tapping interference as produced by concurrent verbal and nonverbal tasks: an analysis of individual differences in left-handers. Brain and Cognition, 24(1), 123–136.PubMedCrossRefGoogle Scholar
  14. Belopolsky, A. V., & Theeuwes, J. (2012). Updating the premotor theory: the allocation of attention is not always accompanied by saccade preparation. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 902–914. doi: 10.1037/a0028662.PubMedGoogle Scholar
  15. Benwell, C. S., Harvey, M., Gardner, S., & Thut, G. (2012). Stimulus- and state-dependence of systematic bias in spatial attention: additive effects of stimulus-size and time-on-task. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior,. doi: 10.1016/j.cortex.2011.12.007.PubMedGoogle Scholar
  16. Bleckley, M., Durso, F., Crutchfield, J., Engle, R., & Khanna, M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin & Review, 10(4), 884–889.CrossRefGoogle Scholar
  17. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547.PubMedCrossRefGoogle Scholar
  18. Bunting, M. F., & Cowan, N. (2005). Working memory and flexibility in awareness and attention. Psychological Research, 69(5–6), 412–419. doi: 10.1007/s00426-004-0204-7.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Carrier, L. M., & Pashler, H. (1995). Attentional limits in memory retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(5), 1339–1348.PubMedCrossRefGoogle Scholar
  20. Castiello, U., Bennett, K., & Chambers, H. (1998). Reach to grasp: the response to a simultaneous perturbation of object position and size. Experimental Brain Research, 120(1), 31–40.PubMedCrossRefGoogle Scholar
  21. Chum, M., Bekkering, H., Dodd, M. D., & Pratt, J. (2007). Motor and visual codes interact to facilitate visuospatial memory performance. Psychonomic Bulletin & Review, 14(6), 1189–1193.CrossRefGoogle Scholar
  22. Chun, M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 1407–1409. doi: 10.1016/j.neuropsychologia.2011.01.029.PubMedCrossRefGoogle Scholar
  23. Collins, T., Heed, T., & Roder, B. (2010). Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience, 4, 14.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Corsi, P. M. (1972). Human memory and the medial temporal region of the brain (Ph.D.). McGill University, Montreal.Google Scholar
  25. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.PubMedCrossRefGoogle Scholar
  26. Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: making sense of competing claims. Neuropsychologia, 49(6), 1401–1406. doi: 10.1016/j.neuropsychologia.2011.01.035.PubMedCentralPubMedCrossRefGoogle Scholar
  27. de Jong, R. (1995). Perception–action coupling and S–R compatibility. Acta Psychologica, 90(1–3), 287–299.PubMedCrossRefGoogle Scholar
  28. Desmurget, M., Prablanc, C., Arzi, M., Rossetti, Y., Paulignan, Y., & Urquizar, C. (1996). Integrated control of hand transport and orientation during prehension movements. Experimental Brain Research, 110(2), 265–278.PubMedCrossRefGoogle Scholar
  29. Deubel, H., Schneider, W. X., & Paprotta, I. (1998). Selective Dorsal and Ventral Processing: evidence for a Common Attentional Mechanism in Reaching and Perception. Visual Cognition, 5(1–2), 81–107. doi: 10.1080/713756776.CrossRefGoogle Scholar
  30. Dirnberger, G., Reumann, M., Endl, W., Lindinger, G., Lang, W., & Rothwell, J. C. (2000). Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials. Experimental Brain Research, 135(2), 231–240.PubMedCrossRefGoogle Scholar
  31. Dodd, M. D., & Shumborski, S. (2009). Examining the influence of action on spatial working memory: the importance of selection. The Quarterly Journal of Experimental Psychology, 62(6), 1236–1247.PubMedCrossRefGoogle Scholar
  32. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology, 113(4), 501–517.PubMedCrossRefGoogle Scholar
  33. Essig, K., Maycock, J., Ritter, H., & Schack, T. (2011). The Cognitive Nature of Action—A Bi-Modal Approach towards the Natural Grasping of Known and Unknown Objects. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), September 25, 63–68.Google Scholar
  34. Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: action planning primes action-related stimulus dimensions. Psychological Research, 71(1), 22–29.PubMedCrossRefGoogle Scholar
  35. Fitts, P. M., & Deininger, R. L. (1954). S–R compatibility: correspondence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48(6), 483–492.PubMedCrossRefGoogle Scholar
  36. Foerster, R. M., Carbone, E., Koesling, H., & Schneider, W. X. (2011). Saccadic eye movements in a high-speed bimanual stacking task: changes of attentional control during learning and automatization. Journal of Vision, 11(7), 9. doi: 10.1167/11.7.9.PubMedCrossRefGoogle Scholar
  37. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.CrossRefGoogle Scholar
  38. Gazzaley, A., & Nobre, A. C. (2012). Top–down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Hale, S., Myerson, J., Rhee, S. H., Weiss, C. S., & Abrams, R. A. (1996). Selective interference with the maintenance of location information in working memory. Neuropsychology, 10(2), 228–240.CrossRefGoogle Scholar
  40. Hesse, C., & Franz, V. H. (2009). Memory mechanisms in grasping. Neuropsychologia, 47(6), 1532–1545.PubMedCrossRefGoogle Scholar
  41. Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 113–136. doi: 10.1037/0096-1523.28.1.113.Google Scholar
  42. Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189–202.PubMedCrossRefGoogle Scholar
  43. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–78; discussion 878-937.Google Scholar
  44. Hughes, C. M. L., Seegelke, C., Spiegel, M. A., Oehmichen, C., Hammes, J., & Schack, T. (2012). Corrections in grasp posture in response to modifications of action goals. PLoS ONE, 7(9), e43015.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ikkai, A., & Curtis, C. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49(6), 1428–1434.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Janczyk, M., & Grabowski, J. (2011). The focus of attention in working memory: evidence from a word updating task. Memory, 19(2), 211–225. doi: 10.1080/09658211.2010.546803.PubMedCrossRefGoogle Scholar
  47. Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.PubMedCrossRefGoogle Scholar
  48. Jha, A. (2002). Tracking the time-course of attentional involvement in spatial working memory: an event-related potential investigation. Brain Research, 15(1), 61–69.PubMedGoogle Scholar
  49. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance: IX (pp. 187–203). Hillsdale, NJ: Erlbaum.Google Scholar
  50. Juan, C.-H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541–15544. doi: 10.1073/pnas.0403507101.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kessels, R. P., van Zandvoort, M. J., Postma, A., Kappelle, L. J., & de Haan, E. H. (2000). The Corsi Block-Tapping Task: standardization and normative data. Applied Neuropsychology, 7(4), 252–258. doi: 10.1207/S15324826AN0704_8.PubMedCrossRefGoogle Scholar
  52. Kirsch, W., & Hennighausen, E. (2010). ERP correlates of linear hand movements: distance dependent changes. Clinical Neurophysiology, 121(8), 1285–1292. doi: 10.1016/j.clinph.2010.02.151.PubMedCrossRefGoogle Scholar
  53. Kirsch, W., Hennighausen, E., & Rösler, F. (2009). Dissociating cognitive and motor interference effects on kinesthetic short-term memory. Psychological Research, 73(3), 380–389.PubMedCrossRefGoogle Scholar
  54. Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In R. S. Nickerson (Ed.), Attention and performance. VIII (pp. 259–276). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  55. Klein, R., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive control of visual attention? Revisited! In C. Umiltà & M. Moscovitch (Eds.), Attention and performance: XV. Conscious and nonconscious information processing (pp. 333–350). Cambridge, Mass. [u.a.]: MIT Press.Google Scholar
  56. Lawrence, B. M., Myerson, J., Oonk, H. M., & Abrams, R. A. (2001). The effects of eye and limb movements on working memory. Memory (Hove, England), 9(4), 433–444.Google Scholar
  57. Logan, S. W., & Fischman, M. G. (2011). The relationship between end-state comfort effects and memory performance in serial and free recall. Acta Psychologica, 137(3), 292–299.PubMedCrossRefGoogle Scholar
  58. Luck, S. J., & Hillyard, S. A. (2000). The operation of selective attention at multiple stages of processing: Evidence from human and monkey electrophysiology. In M. S. Gazzaniga (Ed.), The New Cognitive Neurosciences (2nd ed., pp. 687–700). Cambridge: MIT Press.Google Scholar
  59. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. doi: 10.1038/36846.PubMedCrossRefGoogle Scholar
  60. Memelink, J., & Hommel, B. (2012). Intentional weighting: a basic principle in cognitive control. Psychological Research,. doi: 10.1007/s00426-012-0435-y.PubMedCentralPubMedGoogle Scholar
  61. Miyake, A., & Shah, P. (Eds.). (1999). Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. New York: Cambridge University Press.Google Scholar
  62. Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7(14), 8.1–16. doi: 10.1167/7.14.8.
  63. Murray, A. M., Nobre, A. C., & Stokes, M. G. (2011). Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 49(6), 1458–1465.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257–269.PubMedCrossRefGoogle Scholar
  65. Ohbayashi, M., Ohki, K., & Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science 301(5630), 233–236.Google Scholar
  66. Okon-Singer, H., Podlipsky, I., Siman-Tov, T., Ben-Simon, E., Zhdanov, A., Neufeld, M. Y., et al. (2011). Spatio-temporal indications of sub-cortical involvement in leftward bias of spatial attention. NeuroImage, 54(4), 3010–3020. doi: 10.1016/j.neuroimage.2010.10.078.PubMedCrossRefGoogle Scholar
  67. Pashler, H. (1991). Shifting visual attention and selecting motor responses: distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1023–1040.PubMedGoogle Scholar
  68. Paulignan, Y., Jeannerod, M., MacKenzie, C., & Marteniuk, R. (1991). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Experimental Brain Research, 87(2), 407–420.PubMedCrossRefGoogle Scholar
  69. Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25.PubMedCrossRefGoogle Scholar
  70. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174. doi: 10.1037/0096-3445.109.2.160.CrossRefGoogle Scholar
  71. Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D’Esposito, M. (2004). The where and how of attention-based rehearsal in spatial working memory. Brain Research, 20(2), 194–205.PubMedGoogle Scholar
  72. Postle, B. R., Idzikowski, C., Della Sala, S., Logie, R. H., & Baddeley, A. D. (2006). The selective disruption of spatial working memory by eye movements. Quarterly Journal of Experimental Psychology (2006), 59(1), 100–120.Google Scholar
  73. Prinzmetal, W., Presti, D. E., & Posner, M. I. (1986). Does attention affect visual feature integration? Journal of Experimental Psychology, 12(3), 361–369.PubMedGoogle Scholar
  74. Proctor, R. W. (2011). Playing the Simon game: use of the Simon task for investigating human information processing. Acta Psychologica, 136(2), 182–188. doi: 10.1016/j.actpsy.2010.06.010.PubMedCrossRefGoogle Scholar
  75. Quinn, J. G., & Ralston, G. E. (1986). Movement and attention in visual working memory. The Quarterly Journal of Experimental Psychology, 38(4), 689–703.PubMedCrossRefGoogle Scholar
  76. Quinn, J. T., & Sherwood, D. E. (1983). Time requirements of changes in program and parameter variables in rapid ongoing movements. Journal of Motor Behavior, 15(2), 163–178.PubMedCrossRefGoogle Scholar
  77. Rizzolatti, G., & Craighero, L. (1998). Spatial attention: Mechanisms and theories. In M. Sabourin, F. Craick, & M. Robert (Eds.), Advances in psychological science. Biological and Cognitive Aspects (pp. 171–198). Montreal: Psychology Press.Google Scholar
  78. Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40.Google Scholar
  79. Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and Selective Attention. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance: XV. Conscious and nonconscious information processing (pp. 231–265). Cambridge, Mass. [u.a.]: MIT Press.Google Scholar
  80. Schall, J. D., & Woodman, G. F. (2012). A Stage Theory of Attention and Action. In G. R. Mangun (Ed.), The neuroscience of attention. Attentional control and selection (pp. 187–208). New York [u.a.]: Oxford Univ. Press.Google Scholar
  81. Schiegg, A., Deubel, H., & Schneider, W. X. (2003). Attentional selection during preparation of prehension movements. Visual Cognition, 4, 409–431.CrossRefGoogle Scholar
  82. Schmidt, B., Vogel, E., Woodman, G., & Luck, S. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754–763.CrossRefGoogle Scholar
  83. Schneider, W. X. (1995). VAM: a neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Visual Cognition, 2(2–3), 331–376.CrossRefGoogle Scholar
  84. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulusresponse compatibility. An integrated perspective (pp. 31–86). Amsterdam: North Holland.Google Scholar
  85. Smith, D. T., & Schenk, T. (2012). The Premotor theory of attention: time to move on? Neuropsychologia, 50(6), 1104–1114. doi: 10.1016/j.neuropsychologia.2012.01.025.PubMedCrossRefGoogle Scholar
  86. Smith, D. T., Schenk, T., & Rorden, C. (2012). Saccade preparation is required for exogenous attention but not endogenous attention or IOR. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1438–1447. doi: 10.1037/a0027794.PubMedGoogle Scholar
  87. Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A, 40(3), 497–514. doi: 10.1080/02724988843000041.CrossRefGoogle Scholar
  88. Smyth, M. M., & Scholey, K. A. (1994). Interference in immediate spatial memory. Memory & Cognition, 22(1), 1–13.CrossRefGoogle Scholar
  89. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, 1–29.CrossRefGoogle Scholar
  90. Spiegel, M. A., Koester, D., & Schack, T. (2013). The Functional Role of Working Memory in the (Re-)Planning and Execution of Grasping Movements. Journal of Experimental Psychology. Human Perception and Performance, 39(1).Google Scholar
  91. Spiegel, M. A., Koester, D., Weigelt, M., & Schack, T. (2012). The costs of changing an intended action: movement planning, but not execution, interferes with verbal working memory. Neuroscience Letters, 509, 82–86. doi: 10.1016/j.neulet.2011.12.033.PubMedCrossRefGoogle Scholar
  92. Stelmach, G. E., Castiello, U., & Jeannerod, M. (1994). Orienting the finger opposition space during prehension movements. Journal of Motor Behavior, 26(2), 178–186.PubMedCrossRefGoogle Scholar
  93. Stoffer, T. H. (1991). Attentional focussing and spatial stimulus–response compatibility. Psychological Research, 53(2), 127–135.PubMedCrossRefGoogle Scholar
  94. Theeuwes, J., Kramer, A., & Irwin, D. (2011). Attention on our mind: the role of spatial attention in visual working memory. Acta Psychologica, 137(2), 248–251. doi: 10.1016/j.actpsy.2010.06.011.PubMedCrossRefGoogle Scholar
  95. Tipper, S. P., Howard, L. A., & Houghton, G. (1998). Action-based mechanisms of attention. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 353(1373), 1385–1393. doi: 10.1098/rstb.1998.0292.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 891–905.PubMedGoogle Scholar
  97. Umiltà, C., & Nicoletti, R. (1992). An integrated model of the Simon effect. In J. Alegria, D. Holender, J. Junca de Morais, & M. Radeau (Eds.), Analytic approaches to human cognition (xv, pp. 331–350). Oxford: North-Holland.Google Scholar
  98. van Donkelaar, P., & Franks, I. M. (1991). The effects of changing movement velocity and complexity on response preparation: evidence from latency, kinematic, and EMG measures. Experimental Brain Research, 83(3), 618–632.PubMedCrossRefGoogle Scholar
  99. Velzen, J., Gherri, E., & Eimer, M. (2006). ERP effects of movement preparation on visual processing: attention shifts to the hand, not the goal. Cognitive Processing, 7(S1), 100–101.Google Scholar
  100. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114.PubMedGoogle Scholar
  101. Weigelt, M., Rosenbaum, D. A., Huelshorst, S., & Schack, T. (2009). Moving and memorizing: motor planning modulates the recency effect in serial and free recall. Acta Psychologica, 132(1), 68–79.PubMedCrossRefGoogle Scholar
  102. Westerholz, J., Schack, T. & Koester, D. (2013). Event-related brain potentials for goal-related power grips. PLOS ONE.Google Scholar
  103. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Neurocognition and Action, Biomechanics-Research Group, Faculty of Psychology and Sport SciencesBielefeld UniversityBielefeldGermany
  2. 2.Center of Excellence-Cognitive Interaction Technology (CITEC)Bielefeld UniversityBielefeldGermany
  3. 3.CoR-Lab Research Institute for Cognition and RoboticsBielefeld UniversityBielefeldGermany

Personalised recommendations