Psychological Research

, Volume 78, Issue 2, pp 248–265 | Cite as

Additions are biased by operands: evidence from repeated versus different operands

  • Pom CharrasEmail author
  • Enrique Molina
  • Juan Lupiáñez
Original Article


Recent evidence led to the conclusion that addition problems are biased towards overestimation, regardless of whether information is conveyed by symbolic or non-symbolic stimuli (the Operational Momentum effect). The present study focuses on the role of operands in the overestimation of addition problems. Based on the tie effect, and on recent evidence that the nature of operands biases addition problems towards an underestimation when operands are repeated, but towards an overestimation when different, we aim here to further elucidate the contribution of operands to addition problems. Experiment 1 replicates the underestimation of repeated-operand additions and overestimation of different-operand additions, with large numbers (around 50), and explores whether these effects also apply to small operand additions (around 10). Experiment 2 further explores the overestimation of different-operand additions by investigating the roles of operand order and numerical distance between operands. The results show that both factors have an impact on the overestimation size, but are not crucial for overestimation to occur. The results are discussed in terms of arithmetic strategies, spatial organization of numbers and magnitude representation.


Arithmetic Operation Numerical Distance Mental Number Line Magnitude Representation Direct Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44(1–2), 75–106.PubMedCrossRefGoogle Scholar
  2. Ashcraft, M. H. (1995). Cognitive psychology and simple arithmetic: A review and summary of new directions. Mathematical Cognition, 1, 3–34.Google Scholar
  3. Ashcraft, M. H., & Christy, K. S. (1995). The frequency of arithmetic facts in elementary texts: Addition and multiplication in grades 1–6. Journal for Research in Mathematics Education, 26(5), 396–421.CrossRefGoogle Scholar
  4. Blankenberger, S. (2001). The arithmetic tie effect is mainly encoding-based. Cognition, 82, 15–24.CrossRefGoogle Scholar
  5. Butterworth, B., Zorzi, M., et al. (2001). Storage and retrieval of addition facts: The role of number comparison. Quarterly Journal Experimental Psychology, 54A, 1005–1029.CrossRefGoogle Scholar
  6. Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure, process, and acquisition. Canadian Journal of Psychology, 39, 338–366.CrossRefGoogle Scholar
  7. Campbell, J. I. D., & Gunter, R. (2002). Calculation, culture, and the repeated operand effect. Cognition, 86, 71–96.PubMedCrossRefGoogle Scholar
  8. Campbell, J. I. D., & Xue, Q. L. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130(2), 299–315.CrossRefGoogle Scholar
  9. Charras, P., & Lupiáñez, J. (2009). The relevance of symmetry in line length perception. Perception, 38(10), 1428–1438.Google Scholar
  10. Charras, P., & Lupiáñez, J. (2010). Length Perception of Horizontal and Vertical Bisected Lines. Psychological Research, 74(2), 196–206. Google Scholar
  11. Charras, P., Brod, G., & Lupiáñez, J. (2012). Is 26 + 26 smaller than 24 + 28? Estimating the approximate magnitude of repeated vs. different numbers. Attention Perception & Psychophysics, 74(1), 163–173.CrossRefGoogle Scholar
  12. Cordes, S., Gallistel, C. R., Gelman, R., & Latham, P. (2007). Nonverbal arithmetic in humans: Light from noise. Perception & Psychophysics, 69(7), 1185–1203.CrossRefGoogle Scholar
  13. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRefGoogle Scholar
  14. Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822–826.PubMedCrossRefGoogle Scholar
  15. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556.PubMedCrossRefGoogle Scholar
  16. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1–2), 43–74.PubMedCrossRefGoogle Scholar
  17. Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006). Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica, 122, 221–233.PubMedCrossRefGoogle Scholar
  18. Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple arithmetic. Psychological Review, 79, 329–343.CrossRefGoogle Scholar
  19. Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention Perception & Psychophysics, 71(4), 803–821.CrossRefGoogle Scholar
  20. Lefevre, J. A., & Liu, J. (1997). The role of experience in numerical skill: Multiplication performance in adults from Canada and China. Mathematical Cognition, 3(1), 31–62.CrossRefGoogle Scholar
  21. LeFevre, J., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology Learning Memory and Cognition, 22, 216–230.CrossRefGoogle Scholar
  22. Lefevre, J. A., Shanahan, T., & DeStefano, D. (2004). The tie effect in simple arithmetic: An access-based account. Memory & Cognition, 32(6), 1019–1031.CrossRefGoogle Scholar
  23. Lefevre, J. A., Smith-Chant, B. L., Hiscock, K., Daley, K. E., & Morris, J. (2003). Young adults’ strategic choices in simple arithmetic: Implications for the development of mathematical representations. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 203–228). Mahwah, NJ: Erlbaum.Google Scholar
  24. McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324–1333.Google Scholar
  25. McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400–408.PubMedCrossRefGoogle Scholar
  26. Miller, K., Perlmutter, M., & Keating, D. (1984). Cognitive arithmetic: Comparison of operations. Journal of Experimental Psychology Learning Memory and Cognition, 10, 46–60.CrossRefGoogle Scholar
  27. Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109, 408–415.PubMedCrossRefGoogle Scholar
  28. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime user’s guide. Pittsburg: Psychology Software Tools Inc.Google Scholar
  29. Xu, Y. (2009). Distinctive neural mechanisms supporting visual object individuation and identification. Journal of Cognitive Neuroscience, 21(3), 511–518.PubMedCrossRefGoogle Scholar
  30. Xu, Y., & Chun, M. M. (2007). Visual grouping in human parietal cortex. Proceedings of the National Academy of Sciences, 104, 18766–18771.CrossRefGoogle Scholar
  31. Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Sciences, 13(4), 167–174.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Psicología Experimental y de Fisiología del ComportamientoUniversity of GranadaGranadaSpain

Personalised recommendations