Advertisement

Psychological Research

, Volume 78, Issue 1, pp 84–95 | Cite as

Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo

  • E. Glenn Schellenberg
  • Stephanie M. Stalinski
  • Bradley M. Marks
Original Article

Abstract

A melody’s identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners’ mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners’ task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.

Keywords

Music Training Exposure Phase Absolute Pitch Pitch Change Pitch Accent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was funded by the Natural Sciences and Engineering Research Council of Canada. Andrew Griffith, Monika Mankarious, and Elizabeth Sharma assisted in recruiting and testing participants. Rogério Lira helped in producing the figures.

References

  1. Abe, J.-I., & Okada, A. (2004). Integration of metrical and tonal organization in melody perception. Japanese Psychological Research, 46, 298–307.CrossRefGoogle Scholar
  2. Andrews, M. W., Dowling, W. J., Bartlett, J. C., & Halpern, A. R. (1998). Identification of speeded and slowed familiar melodies by younger, middle-aged, and older musicians and nonmusicians. Psychology and Aging, 13, 462–471.PubMedCrossRefGoogle Scholar
  3. Bartlett, J. C., & Dowling, W. J. (1980). Recognition of transposed melodies: A key-distance effect in developmental perspective. Journal of Experimental Psychology: Human Perception and Performance, 6, 501–513.PubMedGoogle Scholar
  4. Bergeson, T. R., & Trehub, S. E. (2002). Absolute pitch and tempo in mothers’ songs to infants. Psychological Science, 13, 72–75.PubMedCrossRefGoogle Scholar
  5. Boltz, M. G. (1998). Tempo discrimination of musical patterns: Effects due to pitch and rhythmic structure. Perception & Psychophysics, 60, 1357–1373.CrossRefGoogle Scholar
  6. Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics. Music Perception, 28, 367–386.CrossRefGoogle Scholar
  7. Boltz, M. G., Marshburn, E., Jones, M. R., & Johnson, W. (1985). Serial pattern structure and temporal order recognition. Perception & Psychophysics, 37, 209–217.CrossRefGoogle Scholar
  8. Brainerd, C. J., & Reyna, V. F. (2002). Fuzzy-trace theory and false memory. Current Directions in Psychological Science, 11, 164–169.CrossRefGoogle Scholar
  9. Creel, S. C. (2011). Specific previous experience affects perception of harmony and meter. Journal of Experimental Psychology: Human Perception and Performance, 37, 1512–1526.PubMedGoogle Scholar
  10. Dowling, W. J., & Bartlett, J. C. (1981). The importance of interval information in long-term memory for melodies. Psychomusicology, 1, 30–49.CrossRefGoogle Scholar
  11. Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory for melodies. Journal of the Acoustical Society of America, 49, 524–531.PubMedCrossRefGoogle Scholar
  12. Eerola, T., Järvinen, T., Louhivuori, J., & Toiviainen, P. (2001). Statistical features and perceived similarity of folk melodies. Music Perception, 18, 275–296.CrossRefGoogle Scholar
  13. Ellis, R. J., & Jones, M. R. (2009). The role of accent salience and joint accent structure in meter perception. Journal of Experimental Psychology: Human Perception and Performance, 35, 264–280.PubMedGoogle Scholar
  14. Halpern, A. R. (1984). Perception of structure in novel music. Memory & Cognition, 12, 163–170.Google Scholar
  15. Halpern, A. R. (1989). Memory for the absolute pitch of familiar songs. Memory & Cognition, 17, 572–581.CrossRefGoogle Scholar
  16. Halpern, A. R., Bartlett, J. C., & Dowling, W. J. (1995). Aging and experience in the recognition of musical transpositions. Psychology and Aging, 10, 325–342.PubMedCrossRefGoogle Scholar
  17. Halpern, A. R., & Müllensiefen, D. (2008). Effects of timbre and tempo change on memory for music. The Quarterly Journal of Experimental Psychology, 61, 1371–1384.PubMedCrossRefGoogle Scholar
  18. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15, 356–360.PubMedCrossRefGoogle Scholar
  19. Hyde, K. L., Zatorre, R. J., & Peretz, I. (2011). Functional MRI evidence for abnormal neural integrity of the pitch processing network in congenital amusia. Cerebral Cortex, 21, 292–299.PubMedCrossRefGoogle Scholar
  20. John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The big five inventory—Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institute of Personality and Social Research.Google Scholar
  21. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 113, 403–439.CrossRefGoogle Scholar
  22. Jones, M. R. (1987). Dynamic pattern structure in music: Recent theory and research. Perception & Psychophysics, 41, 621–634.CrossRefGoogle Scholar
  23. Jones, M. R. (1993). Dynamics of musical patterns: How do melody and rhythm fit together? In T. J. Tighe & W. J. Dowling (Eds.), Psychology and music: The understanding of melody and rhythm (pp. 67–92). Hillsdale: Erlbaum.Google Scholar
  24. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.PubMedCrossRefGoogle Scholar
  25. Jones, M. R., Boltz, M., & Kidd, G. (1982). Controlled attending as a function of melodic and temporal context. Perception & Psychophysics, 32, 211–218.CrossRefGoogle Scholar
  26. Jones, M. R., Johnston, H. M., & Puente, J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending. Cognitive Psychology, 53, 59–96.PubMedCrossRefGoogle Scholar
  27. Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.PubMedCrossRefGoogle Scholar
  28. Jones, M. R., & Ralston, J. T. (1991). Some influences of accent structure on melody recognition. Memory & Cognition, 19, 8–20.CrossRefGoogle Scholar
  29. Krumhansl, C. L. (1991). Memory for musical surface. Memory & Cognition, 19, 401–411.CrossRefGoogle Scholar
  30. Krumhansl, C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126, 159–179.PubMedCrossRefGoogle Scholar
  31. Ladinig, O., & Schellenberg, E. G. (2012). Liking unfamiliar music: Effects of felt emotion and individual differences. Psychology of Aesthetics, Creativity, and the Arts, 6, 146–154.CrossRefGoogle Scholar
  32. Lamont, A., & Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18, 245–274.CrossRefGoogle Scholar
  33. Levitin, D. J. (1994). Absolute memory of musical pitch: Evidence from the production of learned melodies. Perception & Psychophysics, 56, 414–423.CrossRefGoogle Scholar
  34. Levitin, D. J., & Cook, P. R. (1996). Memory for musical tempo: Additional evidence that auditory memory is absolute. Perception & Psychophysics, 58, 927–935.CrossRefGoogle Scholar
  35. Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? Journal of Neuroscience, 29, 10215–10220.PubMedCentralPubMedCrossRefGoogle Scholar
  36. McAdams, S., Vieillard, S., Houix, O., & Reynolds, R. (2004). Perception of musical similarity among contemporary thematic materials in two instrumentations. Music Perception, 22, 207–237.CrossRefGoogle Scholar
  37. Monahan, C. B., & Carterette, E. C. (1985). Pitch and duration as determinants of musical space. Music Perception, 3, 1–32.CrossRefGoogle Scholar
  38. Nygaard, L. C. (2005). Perceptual integration of linguistic and nonlinguistic properties of speech. In D. B. Pisoni & R. E. Remez (Eds.), Handbook of speech perception (pp. 390–413). Malden, MA: Oxford/Blackwell.CrossRefGoogle Scholar
  39. Palmer, C., & Krumhansl, C. L. (1987a). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13, 116–126.PubMedGoogle Scholar
  40. Palmer, C., & Krumhansl, C. L. (1987b). Pitch and temporal contributions to musical phase perception: Effects of harmony, performance timing, and familiarity. Perception & Psychophysics, 41, 505–518.CrossRefGoogle Scholar
  41. Peretz, I. (2008). Musical disorders: From behavior to genes. Current Directions in Psychological Science, 17, 329–333.CrossRefGoogle Scholar
  42. Peretz, I., Brattico, E., Järvenpää, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132, 1277–1286.PubMedCrossRefGoogle Scholar
  43. Peretz, I., Gaudreau, D., & Bonnel, A.-M. (1998). Exposure effects on music preference and recognition. Memory & Cognition, 26, 884–902.CrossRefGoogle Scholar
  44. Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114.PubMedCrossRefGoogle Scholar
  45. Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 1–11.PubMedCrossRefGoogle Scholar
  46. Poulin-Charronnat, B., Bigand, E., Lalitte, P., Madurell, F., Vieillard, S., & McAdams, S. (2004). Effects of a change in instrumentation on the recognition of musical materials. Music Perception, 22, 239–263.CrossRefGoogle Scholar
  47. Prince, J. B., Schmuckler, M. A., & Thompson, W. F. (2009). The effect of task and pitch structure on pitch–time interactions in music. Memory & Cognition, 37, 368–381.CrossRefGoogle Scholar
  48. Prince, J. B., Thompson, W. F., & Schmuckler, M. A. (2009). Pitch and time, tonality and meter: How do musical dimensions combine? Journal of Experimental Psychology: Human Perception and Performance, 35, 1598–1617.PubMedGoogle Scholar
  49. Radvansky, G. A., Fleming, K. J., & Simmons, J. A. (1995). Timbre reliance in nonmusicians’ and musicians’ memory for melodies. Music Perception, 13, 127–140.CrossRefGoogle Scholar
  50. Radvansky, G. A., & Potter, J. K. (2000). Source cuing: Memory for melodies. Memory & Cognition, 28, 693–699.CrossRefGoogle Scholar
  51. Reder, L. M., Donavos, D. K., & Erickson, M. A. (2002). Perceptual match effects in direct tests of memory: The role of contextual fan. Memory & Cognition, 30, 312–323.CrossRefGoogle Scholar
  52. Schellenberg, E. G. (1996). Expectancy in melody: Tests of the implication-realization model. Cognition, 58, 75–125.PubMedCrossRefGoogle Scholar
  53. Schellenberg, E. G. (2001). Asymmetries in the discrimination of musical intervals: Going out-of-tune is more noticeable than going in-tune. Music Perception, 19, 223–248.CrossRefGoogle Scholar
  54. Schellenberg, E. G., Iverson, P., & McKinnon, M. C. (1999). Name that tune: Identifying popular recordings from brief excerpts. Psychonomic Bulletin & Review, 6, 641–646.CrossRefGoogle Scholar
  55. Schellenberg, E. G., Krysciak, A. M., & Campbell, R. J. (2000). Perceiving emotion in melody: Interactive effects of pitch and rhythm. Music Perception, 18, 155–171.CrossRefGoogle Scholar
  56. Schellenberg, E. G., Peretz, I., & Vieillard, S. (2008). Liking for happy and sad sounding music: Effects of exposure. Cognition and Emotion, 22, 218–237.CrossRefGoogle Scholar
  57. Schellenberg, E. G., & Trehub, S. E. (1996). Children’s discrimination of melodic intervals. Developmental Psychology, 32, 1039–1050.CrossRefGoogle Scholar
  58. Schellenberg, E. G., & Trehub, S. E. (1999). Culture-general and culture-specific factors in the discrimination of melodies. Journal of Experimental Child Psychology, 74, 107–127.PubMedCrossRefGoogle Scholar
  59. Schellenberg, E. G., & Trehub, S. E. (2003). Good pitch memory is widespread. Psychological Science, 14, 262–266.PubMedCrossRefGoogle Scholar
  60. Schellenberg, E. G., & Trehub, S. E. (2008). Is there an Asian advantage for pitch memory? Music Perception, 25, 241–252.CrossRefGoogle Scholar
  61. Slavin, S. (2010). PsyScript (Version 2.3.0) [software]. Available from https://open.psych.lancs.ac.uk/software/PsyScript.html.
  62. Smith, N. A., & Schmuckler, M. A. (2008). Dial A440 for absolute pitch: Absolute pitch memory by non-absolute pitch processors. Journal of the Acoustical Society of America, 123, EL77–EL84.PubMedCrossRefGoogle Scholar
  63. Stalinski, S. M., & Schellenberg, E. G. (2010). Shifting perceptions: Developmental changes in judgments of melodic similarity. Developmental Psychology, 46, 1799–1803.PubMedCrossRefGoogle Scholar
  64. Takeuchi, A. H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113, 345–361.PubMedCrossRefGoogle Scholar
  65. Thompson, W. F., Schellenberg, E. G., & Letnic, A. K. (2012). Fast and loud background music disrupts reading comprehension. Psychology of Music, 40, 700–708.CrossRefGoogle Scholar
  66. Tillmann, B., Gossellin, N., Bigand, E., & Peretz, I. (2012). Priming paradigm reveals harmonic structure processing in congenital amusia. Cortex, 48, 1073–1078.PubMedCrossRefGoogle Scholar
  67. Trainor, L. J., Wu, L., & Tsang, C. D. (2004). Long-term memory for music: Infants remember tempo and timbre. Developmental Science, 7, 289–296.PubMedCrossRefGoogle Scholar
  68. Trehub, S. E., Schellenberg, E. G., & Nakata, T. (2008). Cross-cultural perspectives on pitch memory. Journal of Experimental Child Psychology, 100, 40–52.PubMedCrossRefGoogle Scholar
  69. Tulving, E., & Thompson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.CrossRefGoogle Scholar
  70. Van Egmond, R., Povel, D.-J., & Maris, E. (1996). The influence of height and key on the perceptual similarity of transposed melodies. Perception & Psychophysics, 58, 1252–1259.CrossRefGoogle Scholar
  71. Volkova, A., Trehub, S. E., & Schellenberg, E. G. (2006). Infants’ memory for musical performances. Developmental Science, 9, 583–589.PubMedCrossRefGoogle Scholar
  72. Warker, J. A., & Halpern, A. R. (2005). Musical stem completion: Humming that note. American Journal of Psychology, 118, 567–585.PubMedGoogle Scholar
  73. Warren, R. M., Gardner, D. A., Brubaker, B. S., & Bashford, J. A, Jr. (1991). Melodic and nonmelodic sequence of tones: Effects of duration on perception. Music Perception, 8, 277–290.CrossRefGoogle Scholar
  74. Weiss, M. W., Trehub, S. E., & Schellenberg, E. G. (2012). Something in the way she sings: Enhanced memory for vocal melodies. Psychological Science, 23, 1074–1078.PubMedCrossRefGoogle Scholar
  75. Wolpert, R. A. (1990). Recognition of melody, harmonic accompaniment, and instrumentation: Musicians vs. nonmusicians. Music Perception, 8, 95–106.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Glenn Schellenberg
    • 1
  • Stephanie M. Stalinski
    • 1
  • Bradley M. Marks
    • 1
  1. 1.Department of PsychologyUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations