Advertisement

Psychological Research

, Volume 77, Issue 5, pp 611–617 | Cite as

Top-down versus bottom-up: when instructions overcome automatic retrieval

  • Florian Waszak
  • Roland Pfister
  • Andrea Kiesel
Original Article

Abstract

Research on human action has extensively covered controlled and automatic processes in the transformation of stimulus information into motor action, and how conflict between both types of processes is solved. However, the question of how automatic stimulus–response (S–R) translation per se depends on top-down control states remains unanswered. The present study addressed this issue by manipulating top-down control state (instructed S–R mapping) and automatic bottom-up processing (retrieval of S–R memory traces) independently from each other. Using a color/shape task-switching paradigm, we compared cross-talk triggered by distractor stimuli, for which the instructed S–R mapping and the S–R associations compiled at the beginning of the experiment matched, with the cross-talk triggered by distractor stimuli, for which (re-)instructed mapping and compiled S–R associations did not match. We show that the latter distractors do not yield any cross-talk in RTs and even reversed cross-talk in error rates, demonstrating that automatic S–R retrieval is modulated by top-down control states.

Keywords

Congruency Effect Memory Trace Incongruent Trial Task Switch Distractor Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by a grant of the Agence Nationale de la Recherche (ANR-09-BLAN-0318).

References

  1. Ansorge, U., & Wühr, P. (2004). A response-discrimination account of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 30, 365–377.PubMedCrossRefGoogle Scholar
  2. Liefooghe, B. Wenke, D. & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory and Cognition (in press).Google Scholar
  3. Brass, M., Wenke, D., Spengler, S., & Waszak, F. (2009). Neural correlates of overcoming interference from instructed and implemented stimulus-response associations. Journal of Neuroscience, 29, 1766–1772. doi: 10.1523/JNEUROSCI.5259-08.2009.PubMedCrossRefGoogle Scholar
  4. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–836. doi: 10.1093/cercor/11.9.825.PubMedCrossRefGoogle Scholar
  5. Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726.PubMedCrossRefGoogle Scholar
  6. Cohen, A., & Shoup, R. (1997). Perceptual dimensional constraints on response selection processes. Cognitive Psychology, 32, 128–181.PubMedCrossRefGoogle Scholar
  7. Cohen-Kdoshay, O., & Meiran, N. (2007). The representation of instructions in working memory leads to autonomous response activation: evidence from the first trials in the flanker paradigm. Quarterly Journal of Experimental Psychology, 60, 1140–1154. doi: 10.1080/17470210600896674.Google Scholar
  8. Colgan, D. M. (1970). Effects of instructions on the skin resistance response. Journal of Experimental Psychology, 86(1), 108–112.PubMedCrossRefGoogle Scholar
  9. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  10. Hommel, B. (2000). The prepared reflex: automaticity and control in stimulus-response translation. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: attention and performance XVIII (pp. 247–273). Cambridge: MIT Press.Google Scholar
  11. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026. doi: 10.1126/science.1089910.PubMedCrossRefGoogle Scholar
  12. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Phillip, A., et al. (2010). Control and interference in task switching—a review. Psychological Bulletin, 136, 849–874. doi: 10.1037/a0019842.PubMedCrossRefGoogle Scholar
  13. Kiesel, A., Wendt, M., & Peters, A. (2007). Task Switching: on the origins of response congruency effects. Psychological Research, 71, 117–125. doi: 10.1007/s00426-005-0004-8.PubMedCrossRefGoogle Scholar
  14. Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory & Cognition, 34, 433–444.CrossRefGoogle Scholar
  15. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185. doi: 10.1126/science.1088545.PubMedCrossRefGoogle Scholar
  16. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychologcial Review, 97, 253–270. doi: 10.1037/0033-295X.97.2.253.CrossRefGoogle Scholar
  17. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. doi: 10.1037/0033-295X.95.4.492.CrossRefGoogle Scholar
  18. Lu, C.-H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207.CrossRefGoogle Scholar
  19. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109, 163–203. doi: 10.1037/0033-2909.109.2.163.PubMedCrossRefGoogle Scholar
  20. Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 1423–1442.CrossRefGoogle Scholar
  21. Meiran, N., & Daichman, A. (2005). Advance task preparation reduces task error rate in the cuing task-switching paradigm. Memory & Cognition, 33, 1272–1288.CrossRefGoogle Scholar
  22. Meiran, N., & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.PubMedCrossRefGoogle Scholar
  23. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi: 10.1146/annurev.neuro.24.1.167.PubMedCrossRefGoogle Scholar
  24. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140. doi: 10.1016/S1364(03)00028-7.PubMedCrossRefGoogle Scholar
  25. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. doi: 10.1037/0096-3445.124.2.207.CrossRefGoogle Scholar
  26. Ruge, H., & Wolfensteller, U. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20, 1656–1667.PubMedCrossRefGoogle Scholar
  27. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information-processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190. doi: 10.1037/0033-295X.84.2.127.CrossRefGoogle Scholar
  28. Waszak, F. (2010). Across-task long-term priming: interaction of task readiness and automatic retrieval. Quarterly Journal of Experimental Psychology, 63(7), 1414–1429.PubMedCrossRefGoogle Scholar
  29. Waszak, F., & Hommel, B. (2007). The costs and benefits of cross-task priming. Memory and Cognition, 35(5), 1175–1186.PubMedCrossRefGoogle Scholar
  30. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413. doi: 10.1016/S0010-0285(02)00520-0.PubMedCrossRefGoogle Scholar
  31. Waszak, F., Hommel, B., & Allport, A. (2004). Semantic generalization of stimulus-task bindings. Psychonomic Bulletin & Review, 11, 1027–1033.CrossRefGoogle Scholar
  32. Waszak, F., Hommel, B., & Allport, A. (2005). Interaction of task readiness and automatic retrieval in task switching: negative priming and competitor priming. Memory and Cognition, 33(4), 595–610.PubMedCrossRefGoogle Scholar
  33. Waszak, F., Wenke, D., & Brass, M. (2008). Cross-talk of instructed and applied arbitrary visuomotor mappings. Acta Psychologica, 127, 30–35. doi: 10.1016/j.actpsy.2006.12.005.PubMedCrossRefGoogle Scholar
  34. Wendt, M., & Kiesel, A. (2008). The impact of stimulus-specific practice and task instructions on response congruency effects between tasks. Psychological Research, 72, 425–432. doi: 10.1007/s00426-007-0117-3.PubMedCrossRefGoogle Scholar
  35. Wenke, D., & Frensch, P. A. (2005). The influence of task instruction on action coding: constraint setting or direct coding? Journal of Experimental Psychology: Human Perception and Performance, 31, 803–819. doi: 10.1037/0096-1523.31.4.803.PubMedCrossRefGoogle Scholar
  36. Wenke, D., Gaschler, R., & Nattkemper, D. (2007). Instruction-induced feature-binding. Psychological Research, 71, 92–106. doi: 10.1007/s00426-005-0038-y.PubMedCrossRefGoogle Scholar
  37. Woodworth, R. S. (1938). Experimental psychology. New York: Holt, Rinehart and Winston.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florian Waszak
    • 1
    • 3
  • Roland Pfister
    • 2
  • Andrea Kiesel
    • 2
  1. 1.Université Paris DescartesSorbonne Paris CitéParisFrance
  2. 2.Department of PsychologyUniversity of WuerzburgWuerzburgGermany
  3. 3.CNRSLaboratoire Psychologie de la Perception, UMR 8158ParisFrance

Personalised recommendations