Psychological Research

, Volume 77, Issue 4, pp 480–491 | Cite as

Examining auditory kappa effects through manipulating intensity differences between sequential tones

  • Doug Alards-Tomalin
  • Launa C. Leboe-McGowan
  • Todd A. Mondor
Original Article


The auditory kappa effect is a tendency to base the perceived duration of an inter-onset interval (IOI) separating two sequentially presented sounds on the degree of relative pitch distance separating them. Previous research has found that the degree of frequency discrepancy between tones extends the subjective duration of the IOI. In Experiment 1, auditory kappa effects for sound intensity were tested using a three-tone, AXB paradigm (where the intensity of tone X was shifted to be closer to either Tone A or B). Tones closer in intensity level were perceived as occurring closer in time, evidence of an auditory-intensity kappa effect. In Experiments 2 and 3, the auditory motion hypothesis was tested by preceding AXB patterns with null intensity and coherent intensity context sequences, respectively. The auditory motion hypothesis predicts that coherent sequences should enhance the perception of motion and increase the strength of kappa effects. In this study, the presence of context sequences reduced kappa effect strength regardless of the properties of the context tones.


Intensity Difference Mixed ANOVA Context Sequence Just Noticeable Difference Significant Linear Trend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by a grant from the Natural Sciences and Engineering Council of Canada to TAM.


  1. Abe, S. (1935). Experimental study on the co-relation between time and space. Tohoku Psychologica Folia, 3, 53–68.Google Scholar
  2. Adams, R. D. (1977). Intervening stimulus effects on category judgments of duration. Perception and Psychophysics, 21, 527–534.CrossRefGoogle Scholar
  3. Adobe Systems, Inc. (2004). Adobe Audition 1.5. San Jose, CA.Google Scholar
  4. Allan, L. G. (1984). Contingent aftereffects in duration judgments. Annuals of the New York Academy of Sciences, 423, 116–130.CrossRefGoogle Scholar
  5. Anderson, N. H. (1974). Algebraic models in perception. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception (Vol. 2). New York: Academic Press.Google Scholar
  6. Benussi, V. (1913). Versuche zur Analyse takil erweckter Scheinbewegungen. Archiv fur die gesamte Psychologie, 36, 58–135.Google Scholar
  7. Block, R. A. (1982). Temporal judgments and contextual change. Journal of Experimental Psychology. Learning, Memory, and Cognition, 8, 530–544.PubMedCrossRefGoogle Scholar
  8. Boltz, M. G. (1998). Tempo discrimination of musical patterns: Effects due to pitch and rhythmic structure. Perception & Psychophysics, 60, 1357–1373.CrossRefGoogle Scholar
  9. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge: MIT Press.Google Scholar
  10. Brigner, W. L. (1986). Effect of perceived brightness on perceived time. Perceptual Motor Skills, 63, 427–430.CrossRefGoogle Scholar
  11. Brown, S. W. (1995). Time, change, and motion: The effects of stimulus movement on temporal perception. Perception & Psychophysics, 57, 105–116.CrossRefGoogle Scholar
  12. Buffardi, L. (1971). Factors affecting the filled-duration illusion in the auditory, tactual, and visual modalities. Perception & Psychophysics, 10, 292–294.CrossRefGoogle Scholar
  13. Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106, 579–593.PubMedCrossRefGoogle Scholar
  14. Cohen, J., Hansel, C. E. M., & Sylvester, J. D. (1953). A new phenomenon in time judgment. Nature, 172, 901.PubMedCrossRefGoogle Scholar
  15. Cohen, J., Hansel, C. E. M., & Sylvester, J. D. (1954). Interdependence of temporal and auditory judgments. Nature, 174, 642–644.PubMedCrossRefGoogle Scholar
  16. Cohen, J., Hansel, C. E. M., & Sylvester, J. D. (1955). Interdependence in judgments of space, time and movement. Acta Psychologica, 11, 360–372.Google Scholar
  17. Collyer, C. E. (1977). Discrimination of spatial and temporal intervals defined by three light flashes: Effects of spacing on temporal judgments and of timing on spatial judgments. Perception & Psychophysics, 21, 357–364.CrossRefGoogle Scholar
  18. Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18, 137–144.PubMedCrossRefGoogle Scholar
  19. Crowder, R. G., & Neath, I. (1994). The influence of pitch on time perception. Music Perception, 12, 379–386.CrossRefGoogle Scholar
  20. Divenyi, P. L., & Danner, W. F. (1977). Discrimination of time intervals marked by brief acoustical pulses of various intensities and spectra. Perception & Psychophysics, 21, 125–142.CrossRefGoogle Scholar
  21. Goldstone, S., Llamon, W. T., & Sechzer, J. (1979). Light-intensity and judged duration. Bulletin of the Psychonomic Society, 12, 83–84.Google Scholar
  22. Grassi, M., & Darwin, C. J. (2006). The subjective duration of ramped and damped sounds. Attention, Perception, & Psychophysics, 68, 1382–1392.CrossRefGoogle Scholar
  23. Grondin, S., Kuroda, T., & Mitsudo, T. (2011). Spatial effects on tactile duration categorization. Canadian Journal of Experimental Psychology, 65, 163–167.PubMedCrossRefGoogle Scholar
  24. Grondin, S., & Plourde, M. (2007). Discrimination of time intervals presented in sequences: Spatial effects with multiple auditory sources. Human Movement Science, 26, 702–716.PubMedCrossRefGoogle Scholar
  25. Hass, E. J., & Hass, K. C. (1984). Alternative to the wavelength interpretation of the auditory kappa effect. Perceptual and Motor Skills, 58, 675–678.PubMedCrossRefGoogle Scholar
  26. Henry, M. J., & McAuley, J. D. (2009). Evaluation of an imputed pitch velocity model of the auditory kappa effect. Journal of Experimental Psychology: Human Perception and Performance, 551–564.Google Scholar
  27. Henry, M. J., McAuley, J. D., & Zaleha, M. (2009). Evaluation of an imputed pitch velocity model of the auditory tau effect. Attention, Perception, & Psychophysics, 71(6), 1399–1413.CrossRefGoogle Scholar
  28. Hoopen, G. T., Miyauchi, R., & Nakajima, Y. (2008). Time-based illusions in the auditory mode. In S. Grondin (Ed.), Psychology of time (pp. 139–187). Bingley: Emerald Group Publishing Limited.Google Scholar
  29. Huang, Y. L., & Jones, B. J. (1982). On the interdependence of temporal and spatial judgments. Perception & Psychophysics, 32, 7–14.Google Scholar
  30. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory for auditory patterns. Psychological Review, 83, 323–335.PubMedCrossRefGoogle Scholar
  31. Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91, 128–142.CrossRefGoogle Scholar
  32. Jones, M. R., Maser, D. J., & Kidd, G. R. (1978). Rate and structure in memory for auditory patterns. Memory & Cognition, 6, 246–258.CrossRefGoogle Scholar
  33. Jones, M. R., & Yee, W. (1993). Attending to auditory events: The role of temporal organization. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 199–230). Oxford: Oxford University Press.Google Scholar
  34. Kanai, R., Paffen, C. L. E., Hogendoorn, H., & Verstraten, F. A. J. (2006). Time dilation in dynamic visual display. Journal of Vision, 6, 1421–1430.PubMedGoogle Scholar
  35. Koch, G., Oliveri, M., Torriero, S., Salerno, S., Lo Gerfo, E., & Caltagirone, C. (2007). Repetitive TMS of cerebellum interferers with millisecond time processing. Experimental Brain Research, 179, 291–299.CrossRefGoogle Scholar
  36. Kraemer, P. J., Brown, R. W., & Randall, C. K. (1995). Signal intensity and duration estimation in rats. Behavioral Processes, 34, 265–268.CrossRefGoogle Scholar
  37. Lebensfeld, P., & Wapner, S. (1968). Configuration and space-time interdependence. American Journal of Psychology, 81, 106–110.PubMedCrossRefGoogle Scholar
  38. Leboe, L. C., & Mondor, T. A. (2007). Item-specific congruency effects in non-verbal auditory stroop. Psychological Research, 71, 568–575.PubMedCrossRefGoogle Scholar
  39. Leboe, L. C., & Mondor, T. A. (2008). The role of a change heuristic in judgments of sound duration. Psychonomic Bulletin & Review, 15, 1122–1127.CrossRefGoogle Scholar
  40. Leboe, L. C., & Mondor, T. A. (2010). The role of a change heuristic in judgments of sound intensity. Experimental Psychology, 57, 398–404.PubMedCrossRefGoogle Scholar
  41. MacKenzie, N. (2007). The kappa effect in pitch/time context. Unpublished doctoral dissertation, Ohio State University, Ohio.Google Scholar
  42. MacKenzie, N., & Jones, M. R. (2005). The auditory kappa effect revisited. Paper presented at the 46th annual meeting of the Psychonomic Society, Toronto, Ontario, Canada.Google Scholar
  43. Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. New York: Cambridge University Press.Google Scholar
  44. Matsuda, F. (1974). Effects of space and velocity on time estimation in children and adults. Psychological Research, 37, 107–123.PubMedCrossRefGoogle Scholar
  45. McAuley, J. D., & Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology: Human Perception and Performance, 29, 1102–1125.PubMedCrossRefGoogle Scholar
  46. McAuley, J. D., & Kidd, G. R. (1998). Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences. Journal of Experimental Psychology: Human Perception and Performance, 24, 1786–1800.PubMedCrossRefGoogle Scholar
  47. Mulligan, R. M., & Schiffman, H. R. (1979). Temporal experience as a function of organization in memory. Bulletin of the Psychonomic Society, 14, 417–420.Google Scholar
  48. Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395, 123.PubMedCrossRefGoogle Scholar
  49. Neuhoff, J. G., & McBeath, M. K. (1996). The doppler illusion: The influence of dynamic intensity change on perceived pitch. Journal of Experimental Psychology: Human Perception and Performance, 22, 970–985.PubMedCrossRefGoogle Scholar
  50. Neuhoff, J. G., McBeath, M. K., & Wanzie, W. C. (1999). Dynamic frequency change influences loudness perception: A central, analytical process. Journal of Experimental Psychology: Human Perception and Performance, 25, 1050–1059.PubMedCrossRefGoogle Scholar
  51. Newman, C. V., & Lee, S. G. (1972). The effect of real and imputed distance on judgments of time: Some experiments on the kappa effect. Psychonomic Science, 29, 207–211.Google Scholar
  52. O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28, 2252–2260.PubMedCrossRefGoogle Scholar
  53. Oléron, G. (1952). Influence de l’intensité d’un son sur l’estimation de sa durée apparente. L’année Psychologique, 52, 383–392.PubMedCrossRefGoogle Scholar
  54. Oliveri, M., Koch, G., & Caltagirone, C. (2009). Spatial-temporal interactions in the human brain. Experimental Brain Research, 195, 489–497.CrossRefGoogle Scholar
  55. Ornstein, R. E. (1969). On the experience of time. Baltimore: Penguin Books.Google Scholar
  56. Poynter, W. D., & Homa, D. (1983). Duration judgment and the experience of change. Perception & Psychophysics, 33, 548–560.CrossRefGoogle Scholar
  57. Price-Williams, D. R. (1954). The kappa-effect. Nature, 173, 363–364.PubMedCrossRefGoogle Scholar
  58. Psychology Software Tools, Inc. (2002). E-Prime Software System. Pittsburg, PA.Google Scholar
  59. Sarrazin, J. C., Giraudo, M. D., Pailhous, J., & Bootsma, R. J. (2004). Tau and kappa effects revisited: Dynamics of balancing space and time in memory. Journal of Experimental Psychology: Human Perception and Performance, 30, 411–430.PubMedCrossRefGoogle Scholar
  60. Sarrazin, J. C., Giraudo, M. D., & Pittenger, J. B. (2007). Tau and kappa effects in physical space: The case of audition. Psychological Research, 71, 201–218.PubMedCrossRefGoogle Scholar
  61. Schlauch, R. S., Ries, D. T., & DiGiovanni, J. J. (2001). Duration discrimination and subjective duration for ramped and damped sounds. Journal of the Accoustical Society of America, 109, 2880–2887.Google Scholar
  62. Shingeno, S. (1986). The auditory tau and kappa effects for speech and nonspeech stimuli. Perception & Psychophysics, 40, 9–19.CrossRefGoogle Scholar
  63. Shingeno, S. (1993). The interdependence of pitch and temporal judgments by absolute pitch possessors. Perception & Psychophysics, 54, 682–692.CrossRefGoogle Scholar
  64. Suto, Y. (1952). The effect of space on time estimation (S-effect) in tactual space. Japanese Journal of Psychology, 22, 45–57.Google Scholar
  65. Thomas, E. A. C., & Brown, I, Jr. (1974). Time perception and the filled duration illusion. Perception & Psychophysics, 16, 449–458.CrossRefGoogle Scholar
  66. Thorpe, L. A. (1985). Auditory-temporal organization: Developmental perspectives. Adults’ and infants’ perception of temporal gaps as a junction of stimulus context. Unpublished doctoral dissertation, University of Toronto.Google Scholar
  67. Thorpe, L. A., & Trehub, S. E. (1989). Duration illusion and auditory grouping in infancy. Developmental Psychology, 25, 122–127.CrossRefGoogle Scholar
  68. Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 10, 1–5.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Doug Alards-Tomalin
    • 1
  • Launa C. Leboe-McGowan
    • 1
  • Todd A. Mondor
    • 1
  1. 1.Duff Roblin Building, Department of PsychologyUniversity of ManitobaWinnipegCanada

Personalised recommendations