Advertisement

Psychological Research

, Volume 76, Issue 2, pp 183–191 | Cite as

Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI)

  • Niels Birbaumer
  • Francesco Piccione
  • Stefano Silvoni
  • Moritz WildgruberEmail author
Review

Abstract

The paper presents some speculations on the loss of voluntary responses and operant learning in long-term paralysis in human patients and curarized rats. Based on a reformulation of the ideomotor thinking hypothesis already described in the 19th century, we present evidence that instrumentally learned responses and intentional cognitive processes extinguish as a consequence of long-term complete paralysis in patients with amyotrophic lateral sclerosis (ALS). Preliminary data collected with ALS patients during extended and complete paralysis suggest semantic classical conditioning of brain activity as the only remaining communication possibility in those states.

Keywords

Amyotrophic Lateral Sclerosis Motor Imagery Amyotrophic Lateral Sclerosis Patient Complete Paralysis Neurofeedback Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adam, G. (1998). Visceral Perception. New York: Plenum Press.Google Scholar
  2. Barber, T.X., Kamiya, J. & Miller, N.E. (eds) (1971–1978). Biofeedback and Self-Control. Aldine: Aldine Series.Google Scholar
  3. Birbaumer, N. (2006a). Brain-computer-interface research: coming of age. Clinical Neurophysiology, 117, 479–483.PubMedCrossRefGoogle Scholar
  4. Birbaumer, N. (2006b). Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43, 517–532.PubMedCrossRefGoogle Scholar
  5. Birbaumer, N., & Cohen, L. (2007). Brain-computer-interfaces (BCI): Communication and restoration of movement in paralysis. The Journal of Physiology, 579(3), 621–636.PubMedCrossRefGoogle Scholar
  6. Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1–41.PubMedGoogle Scholar
  7. Birbaumer, N., Ramos Murguialday, A., & Cohen, L. (2008). Brain-computer-interface (BCI) in paralysis. Current Opinion in Neurology, 21, 634–638.PubMedCrossRefGoogle Scholar
  8. Birbaumer, N. & Schmidt, R.F. (1990). Biologische Psychologie (7th edn. 2010). Berlin: Springer.Google Scholar
  9. Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex, statistics and geometry. Berlin: Springer.Google Scholar
  10. Caria, A., Veit, R., Sitaram, R., Lotze, M., Weiskopf, N., Grodd, W., et al. (2007). Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 35, 1238–1246.PubMedCrossRefGoogle Scholar
  11. Dworkin, B. R. (1993). Learning and Physiological Regulation. Chicago: University of Chicago Press.Google Scholar
  12. Dworkin, B. R., & Miller, N. E. (1986). Failure to replicate visceral learning in the acute curarized rat preparation. Behavioral Neuroscience, 100, 299–314.PubMedCrossRefGoogle Scholar
  13. Elbert, T., Rockstroh, B., Lutzenberger, W., & Birbaumer, N. (eds.). (1984). Self-regulation of the brain and behavior. New York: Springer.Google Scholar
  14. Felton, E. A., Wilson, J. A., Williams, J. C., & Garell, P. C. (2007). Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Journal of Neurosurgery, 106, 495–500.PubMedCrossRefGoogle Scholar
  15. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeed-back training for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28(1), 1–12.PubMedCrossRefGoogle Scholar
  16. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (2007). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neurophysiology, 2, 1527–1537.Google Scholar
  17. Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382–385.PubMedCrossRefGoogle Scholar
  18. Halder, S., Agorastos, D., Veit, R., Hammer, E.M., Lee, S., Varkuti, B., et al. (2011). Neural mechanisms of brain-computer interface control. NeuroImage, 55, 1779–1790Google Scholar
  19. He, B. J., & Raichle, M. E. (2009). The fMRI signal, slow cortical potential and consciousness. Trends in Cognitive Science, 13(7), 302–309.CrossRefGoogle Scholar
  20. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  21. Hobson, J. A. (2009). REM sleep and dreaming: Towards a theory of protoconsciousness. Nature Reviews Neuroscience, 10(11), 803–813.PubMedGoogle Scholar
  22. Holland, J., & Skinner, B. F. (1961). The analysis of behavior. New York: MacGraw-Hill.Google Scholar
  23. Jackson, A., Mavoori, J., & Fetz, E. (2006). Long-term motor cortex plasticity induced by an electronic neural implant. Nature, 444, 56–60.PubMedCrossRefGoogle Scholar
  24. James, W. (1890). The principles of psychology. New York: Dover (1950).Google Scholar
  25. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, 103–109.CrossRefGoogle Scholar
  26. Karim, A. A., Kammer, T., Cohen, L., & Birbaumer, N. (2004). Effects of TMS and tDCS on the physiological regulation of cortical excitability in a brain-computer interface. Biomedizinische Technik, 49, 55–57.Google Scholar
  27. Kotchoubey, B., Lang, S., Winter, S., & Birbaumer, N. (2003). Cognitive processing in completely paralyzed patients with amyotrophic lateral sclerosis. European Journal of Neurology, 10(5), 551–558.PubMedCrossRefGoogle Scholar
  28. Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., et al. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42(3), 406–416.PubMedCrossRefGoogle Scholar
  29. Kübler, A., & Birbaumer, N. (2008). Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clinical Neurophysiology, 119, 2658–2666.PubMedCrossRefGoogle Scholar
  30. Lakerveld, J., Kotchoubey, B., & Kübler, A. (2008). Cognitive function in patients with late stage amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(1), 25–29.CrossRefGoogle Scholar
  31. Lebedev, M. A., & Nicolelis, M. A. (2006). Brain machine interfaces: Past, present and future. Trends in Neurosciences, 29, 536–546.PubMedCrossRefGoogle Scholar
  32. Miller, N. E. (1969). Learning of visceral and glandular responses. Science, 163, 434–445.PubMedCrossRefGoogle Scholar
  33. Nagai, Y., Goldstein, L. H., Fenwick, P. B. C., & Trimble, M. R. (2004). Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: A preliminary randomized controlled study. Epilepsy & Behavior, 5, 216–223.CrossRefGoogle Scholar
  34. Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Halder, S., et al. (2008). A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology, 119(8), 1909–1916.PubMedCrossRefGoogle Scholar
  35. Ramos Murguialday, A., Hill, J., Bensch, M., Martens, S., Halder, S., Nijboer, F., et al. (2010). Transition from the locked into the completely locked in state: A physiological analysis. Clinical Neurophysiology,. doi: 10.1016.PubMedGoogle Scholar
  36. Riehle, A., & Vaadia, E. (eds.). (2005). Motor cortex in voluntary movements. A districuted system for distributed funtions. Boca Raton: CRC Press.Google Scholar
  37. Ringholz, G. M., Appel, S. H., Bradshaw, M., Cooke, N. A., Mosnik, D. M., & Schulz, P. E. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–590.PubMedCrossRefGoogle Scholar
  38. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  39. Rockstroh, B., Elbert, T., Birbaumer, N., Wolf, P., Düchting-Röth, A., Reker, M., et al. (1993). Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14, 63–72.PubMedCrossRefGoogle Scholar
  40. Rösler, F., Heil, M., & Röder, B. (1997). Slow negative brain potentials as reflections of specific modular resources of cognition. Biological Psychology, 45, 109–141.PubMedCrossRefGoogle Scholar
  41. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943–974.PubMedCrossRefGoogle Scholar
  42. Silvoni, S., Volpato, C., Cavinato, M., Marchetti, M., Priftis, K., Merico, A., et al. (2009). P300-based brain-computer interface communication: Evaluation and follow-up in amyotrophic lateral sclerosis. Frontiers in Neuroscience, 19(3), 60.Google Scholar
  43. Sitaram, R., Caria, A., Veit, R., Gaber, T., Rota, G., Kübler, A., et al. (2007a). FMRI brain-computer interface: a tool for neuroscientific research and treatment. Computational Intelligence and Neuroscience (Article ID 82069). doi: 10.1155/2007/82069.
  44. Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., et al. (2007b). Temporal classification of multi-channel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage, 34, 1416–1427.PubMedCrossRefGoogle Scholar
  45. Skinner, F. (1953). Science and human behavior. New York: Macmillan.Google Scholar
  46. Sterman, M. B., & Clemente, C. D. (1962). Forebrain inhibitory mechanisms: Cortical synchronization induced by basal forebrain stimulation. Experimental Neurology, 6, 91–102.PubMedCrossRefGoogle Scholar
  47. Strauch, I., & Meier, B. (1992). Dem Träumen auf der Spur. Bern: Huber.Google Scholar
  48. Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials—a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118(5), 1530–1540.CrossRefGoogle Scholar
  49. Velliste, M., Perel, S., Spalding, M. C., et al. (2008). Cortical control of a prothetic arm for self-feeding. Nature, 453, 1098–1101.PubMedCrossRefGoogle Scholar
  50. Volpato, C., Piccione, F., Silvoni, S., Cavinato, M., Palmieri, A., Meneghello, F., et al. (2010). Working memory in amyotrophic lateral sclerosis: Auditory event-related potentials and Neuropsychological evidence. Journal of Clinical Neurophysiology, 27(3), 198–206.PubMedCrossRefGoogle Scholar
  51. Walker, J. E., & Kozlowski, G. (2005). Neurofeedback training of epilepsy. Child and Adolescent Psychiatry Clinics of North America, 14, 163–176.CrossRefGoogle Scholar
  52. Weiskopf, N., Scharnowski, F., Veit, R., Goebel, R., Birbaumer, N., & Mathiak, K. (2005). Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology—Paris, 98, 357–373.Google Scholar
  53. Wilhelm, B., Jordan, M., & Birbaumer, N. (2006). Communication in locked-in syndrome: Effects of imagery on salivary pH. Neurology, 67, 534–535.PubMedCrossRefGoogle Scholar
  54. Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The role of anticipation and intention in the learning of effects of self-performed actions. Psychological Research, 68, 163–175.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Niels Birbaumer
    • 1
    • 2
  • Francesco Piccione
    • 2
  • Stefano Silvoni
    • 2
  • Moritz Wildgruber
    • 3
    Email author
  1. 1.Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TuebingenTübingenGermany
  2. 2.Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere ScientificoVenezia LidoItaly
  3. 3.Department of RadiologyKlinikum Rechts der Isar, Technische Universität MünchenMunichGermany

Personalised recommendations