Psychological Research

, Volume 76, Issue 6, pp 730–735 | Cite as

Spatial orienting of attention in stereo depth

  • Dieter Bauer
  • Axel Plinge
  • Walter H. Ehrenstein
  • Gerhard Rinkenauer
  • Marc Grosjean
Original Article

Abstract

The aim of this study was to investigate the spatial orienting of visual attention in depth under purely stereoscopic viewing conditions. Random-dot stereograms were used to present disparity-defined target stimuli that were either validly or invalidly cued in depth. In separate tasks, participants responded either to the relative depth of the target (protruding vs. receding) or to its shape (square vs. diamond). Stimulus onset asynchronies (SOAs) between an uninformative exogenous cue and target were varied from 250 to 600 ms. For both tasks, mean response times (RTs) were shorter for validly than invalidly cued target depths and this RT advantage was essentially restricted to the shortest SOA of 250 ms. These results indicate that attention can be reflexively allocated to locations in stereo depth under conditions of low perceptual load, and independent of whether depth is relevant to the task or not.

References

  1. Andersen, G. J. (1990). Focused attention in three-dimensional space. Perception & Psychophysics, 47(2), 112–120.CrossRefGoogle Scholar
  2. Andersen, G. J., & Kramer, A. F. (1993). Limits of focused attention in three-dimensional space. Perception & Psychophysics, 53(6), 658–667.CrossRefGoogle Scholar
  3. Arnott, S. R., & Shedden, J. M. (2000). Attention switching in depth using random-dot autostereograms: Attention gradient asymmetries. Perception & Psychophysics, 62, 1459–1473.CrossRefGoogle Scholar
  4. Atchley, P., & Kramer, A. F. (2001). Object and space-based attentional selection in three-dimensional space. Visual Cognition, 8, 1–32.CrossRefGoogle Scholar
  5. Atchley, P., Kramer, A. F., Andersen, G. J., & Theeuwes, J. (1997). Spatial cueing in a stereoscopic display: Evidence for a “depth-aware” attentional focus. Psychonomic Bulletin & Review, 4, 524–529.CrossRefGoogle Scholar
  6. Downing, C., & Pinker, S. (1985). The spatial structure of visual attention. In M. I. Posner & O. S. M. Martin (Eds.), Attention and performance XI (pp. 171–187). Hillsdale: Erlbaum.Google Scholar
  7. Gawryszewski, L. D. G., Riggio, L., Rizzolatti, G., & Umiltà, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25, 19–29.CrossRefGoogle Scholar
  8. Ghiradelli, T. G., & Folk, C. L. (1996). Spatial cuing in a stereoscopic display: Evidence for a “depth-blind” attentional spotlight. Psychonomic Bulletin & Review, 3, 81–86.CrossRefGoogle Scholar
  9. Harris, J. M., McKee, S. P., & Watamaniuk, S. N. J. (1998). Visual search for motion-in-depth: Stereomotion does not ‘pop-out’ from disparity noise. Nature Neuroscience, 1, 165–168.CrossRefPubMedGoogle Scholar
  10. He, Z. J., & Nakayama, K. (1995). Visual attention to surfaces in three dimensional space. Proceedings of the National Academy of Sciences, 92, 11155–11159.CrossRefGoogle Scholar
  11. Howard, I. P., & Rogers, B. J. (2002). Seeing in Depth: Depth Perception (Vol. 2). Toronto, Canada: Porteous, I.Google Scholar
  12. Iavecchia, H. P., & Folk, C. L. (1994). Shifting visual attention in stereographic displays: A time course analysis. Human Factors, 36, 606–618.CrossRefPubMedGoogle Scholar
  13. Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.Google Scholar
  14. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.PubMedGoogle Scholar
  15. Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subjects designs. Psychonomic Bulletin & Review, 1, 476–490.CrossRefGoogle Scholar
  16. Marrara, M. T., & Moore, C. M. (2000). Role of perceptual organization while attending in depth. Perception & Psychophysics, 62, 786–799.CrossRefGoogle Scholar
  17. Masson, G. S., Busettini, C., & Miles, F. A. (1997). Vergence eye movements in response to binocular disparity without depth perception. Nature, 389, 283–286.CrossRefPubMedGoogle Scholar
  18. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.CrossRefPubMedGoogle Scholar
  19. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. Bouwhuis (Eds.), Attention & Performance X: Control of language processes (pp. 531–556). Hillsdale, NJ: Erlbaum.Google Scholar
  20. Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London, 298, 187–198.CrossRefPubMedGoogle Scholar
  21. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.CrossRefPubMedGoogle Scholar
  22. Previc, F. H. (1998). The neuropsychology of 3-D space. Psychological Bulletin, 124, 123–164.CrossRefPubMedGoogle Scholar
  23. Prinzmetal, W., Zvinyatskovskiy, A., Gutierrez, P., & Dilem, L. (2009). Voluntary and involuntary attention have different consequences: The effect of perceptual difficulty. Quarterly Journal of Experimental Psychology, 62(2), 352–369.CrossRefGoogle Scholar
  24. Theeuwes, J., & Pratt, J. (2003). Inhibition of return spreads across 3-D space. Psychonomic Bulletin & Review, 10, 616–620.CrossRefGoogle Scholar
  25. Tyler, C. W. (1974). Depth perception in disparity gratings. Nature, 251, 140–142.CrossRefPubMedGoogle Scholar
  26. Wright, R. D., & Ward, L. M. (2008). Orienting of Attention. New York: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dieter Bauer
    • 1
  • Axel Plinge
    • 1
  • Walter H. Ehrenstein
    • 1
  • Gerhard Rinkenauer
    • 1
  • Marc Grosjean
    • 1
  1. 1.Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany

Personalised recommendations