Psychological Research

, Volume 76, Issue 5, pp 654–666 | Cite as

Flash-lag effect: complicating motion extrapolation of the moving reference-stimulus paradoxically augments the effect

  • Talis BachmannEmail author
  • Carolina Murd
  • Endel Põder
Original Article


One fundamental property of the perceptual and cognitive systems is their capacity for prediction in the dynamic environment; the flash-lag effect has been considered as a particularly suggestive example of this capacity (Nijhawan in Nature 370:256–257, 1994, Behav Brain Sci 31:179–239, 2008). Thus, because of involvement of the mechanisms of extrapolation and visual prediction, the moving object is perceived ahead of the simultaneously flashed static object objectively aligned with the moving one. In the present study we introduce a new method and report experimental results inconsistent with at least some versions of the prediction/extrapolation theory. We show that a stimulus moving in the opposite direction to the reference stimulus by approaching it before the flash does not diminish the flash-lag effect, but rather augments it. In addition, alternative theories (in)capable of explaining this paradoxical result are discussed.


Motion Vector Reference Object Opposite Motion Moving Stimulus Reference Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Estonian Scientific Competency Council for their support via targeted financing research theme SF0182717s06, “Mechanisms of Visual Attention”.


  1. Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology, 13, 59–63.PubMedCrossRefGoogle Scholar
  2. Ansorge, U., Kiss, M., Worschech, F., & Eimer, M. (2011). The initial stage of visual selection is controlled by top-down task set: new ERP evidence. Attention, Perception, & Psychophysics, 73, 113–122.CrossRefGoogle Scholar
  3. Arnold, D. H., Durant, S., & Johnston, A. (2003). Latency differences and the flash-lag effect. Vision Research, 43, 1829–1835.PubMedCrossRefGoogle Scholar
  4. Arnold, D.H., Ong, Y., & Roseboom, W. (2009). Simple differential latencies modulate, but not cause the flash-lag effect. Journal of Vision, 9(5):4, 1–8,, doi: 10.1167/9.5.4.Google Scholar
  5. Bachmann, T. (2010). Priming and retouch in flash-lag and other phenomena of the streaming perceptual input. In R. Nijhawan & B. Khurana, B. (Eds.), Space and time in perception and action (pp. 536–557). Cambridge: Cambridge University Press.Google Scholar
  6. Bachmann, T., Breitmeyer, B. G., & Öğmen, H. (2007). The experimental phenomena of consciousness. A brief dictionary. New York: Oxford University Press.Google Scholar
  7. Bachmann, T., Luiga, I., Põder, E., & Kalev, K. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Consciousness and Cognition, 12, 279–297.PubMedCrossRefGoogle Scholar
  8. Bachmann, T., & Põder, E. (2001). Change in feature space is not necessary for the flash-lag effect. Vision Research, 41, 1103–1106.PubMedCrossRefGoogle Scholar
  9. Baldo, M. V. C., & Klein, S. A. (2008). Shifting attention to the flash-lag effect. Behavioral and Brain Sciences, 31, 198–199.CrossRefGoogle Scholar
  10. Becker, S. I., Ansorge, U., & Turatto, M. (2009). Saccades reveal that allocentric coding of the moving object causes mislocation in the flash-lag effect. Attention, Perception, & Psychophysics, 71, 1313–1324.CrossRefGoogle Scholar
  11. Brenner, E., & Smeets, J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Research, 40, 1645–1648.PubMedCrossRefGoogle Scholar
  12. Eagleman, D. M. (2008). Prediction and postdiction: Two frameworks with the goal of delay compensation. Behavioral and Brain Sciences, 31, 205–206.CrossRefGoogle Scholar
  13. Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science, 287, 2036–2038.PubMedCrossRefGoogle Scholar
  14. Eagleman, D. M., & Sejnowski, T. J. (2007). Motion signals bias localization judgments: A unified explanation for the flash-lag, flash-drag, flash-jump, and Fröhlich illusions. Journal of Vision, 7(4):3, 1–12,, doi: 10.1167/7.4.3.Google Scholar
  15. Enns, J.T., Lleras, A., & Moore, C.M. (2010). Object updating: a force for perceptual continuity and scene stability in human vision. In R. Nijhawan, B. Khurana, (Eds.) Space and time in perception and action (pp. 503–520). Cambridge: Cambridge University Press.Google Scholar
  16. Gauch, A., & Kerzel, D. (2008). Comparison of flashed and moving probes in the flash-lag effect: Evidence for misbinding of abrupt and continuous changes. Vision Research, 48, 1584–1591.PubMedCrossRefGoogle Scholar
  17. Gauch, A., & Kerzel, D. (2009). Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 49, 2983–2991.PubMedCrossRefGoogle Scholar
  18. Kanai, R., Carlson, T. A., Verstraten, F.A.J., & Walsh, V. (2009). Perceived timing of new objects and feature changes. Journal of Vision, 9(7):5, 1–13,, doi: 10.1167/9.7.5.Google Scholar
  19. Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.PubMedCrossRefGoogle Scholar
  20. Kirschfeld, K. (2006). Stopping motion and the flash-lag effect. Vision Research, 46, 1547–1551.PubMedCrossRefGoogle Scholar
  21. Kreegipuu, K., & Allik, J. (2004). Confusion of space and time in the flash-lag effect. Perception, 33, 293–306.PubMedCrossRefGoogle Scholar
  22. Kreegipuu, K., Murd, C., & Allik, J. (2006). Detection of colour changes in a moving object. Vision Research, 46, 1848–1855.PubMedCrossRefGoogle Scholar
  23. Krekelberg, B., & Lappe, M. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Research, 39, 2669–2679.PubMedCrossRefGoogle Scholar
  24. Linares, D., López-Moliner, J., & Johnston, A. (2007). Motion signal and the perceived positions of moving objects. Journal of Vision, 7(7):1, 1–7,, doi: 10.1167/7.7.1.Google Scholar
  25. Maiche, A., Budelli, R., & Gómez-Sena, L. (2007). Spatial facilitation is involved in flash-lag effect. Vision Research, 47, 1655–1661.PubMedCrossRefGoogle Scholar
  26. Mather, G., Verstraten, F., & Anstis, S. (1998). The motion after-effect: a modern perspective. Cambridge: MIT Press.Google Scholar
  27. Maus, G., & Nijhawan, R. (2009). Going, going, gone: Localizing abrupt offsets of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 611–626.PubMedCrossRefGoogle Scholar
  28. Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychological Science, 15, 866–871.PubMedCrossRefGoogle Scholar
  29. Murakami, I. (2001). The flash-lag effect as a spatiotemporal correlational structure. Journal of Vision, 1(1):1, 126–136,, doi: 10.1167/1.2.6.
  30. Murd, C., Kreegipuu, K., & Allik, J. (2009). Detection of colour change in moving objects: Temporal order judgment and reaction time analysis. Perception, 38, 1649–1662.PubMedCrossRefGoogle Scholar
  31. Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257.PubMedCrossRefGoogle Scholar
  32. Nijhawan, R. (1997). Visual decomposition of color through motion extrapolation. Nature, 386, 66–69.PubMedCrossRefGoogle Scholar
  33. Nijhawan, R. (2008). Visual prediction: Psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31, 179–239.PubMedGoogle Scholar
  34. Nijhawan, R., & Khurana, B. (2000). Conscious registration of continuous and discrete visual events. In T. Metzinger (Ed.), Neural correlates of consciousness: empirical and conceptual problems (pp. 203–219). Cambridge: MIT Press.Google Scholar
  35. Nijhawan, R., & Khurana, B. (Eds.). (2010). Space and time in perception and action. Cambridge: Cambridge University Press.Google Scholar
  36. Orbán, D., & Wolpert, M. (2011). Representations of uncertainty in sensorimotor control. Current Opinion in Neurobiology, 21, 1–7. doi: 10.1016/j.conb.2011.05.026.CrossRefGoogle Scholar
  37. Patel, S. S., Ögmen, H., Bedell, H., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science, 290, 1051a.CrossRefGoogle Scholar
  38. Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2009). Improved visual sensitivity during smooth pursuit eye movements: temporal and spatial characteristics. Visual Neuroscience, 26, 329–340.PubMedCrossRefGoogle Scholar
  39. Schütz, A. C., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2008). Improved visual sensitivity during smooth pursuit eye movements. Nature Neuroscience, 11, 1211–1216.PubMedCrossRefGoogle Scholar
  40. Shi, Z., & Nijhawan, R. (2008). Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects. Journal of Vision, 8(7):24, 1–14,, doi: 10.1167/8.7.24.Google Scholar
  41. Sturz, B. R., & Bodily, K. D. (2010). Encoding of variability of landmark-based spatial information. Psychological Research, 74, 560–567.PubMedCrossRefGoogle Scholar
  42. Watanabe, K., & Yokoi, K. (2008). Dynamic distortion of visual position representation around moving objects. Journal of Vision, 8(3):13, 1–11,, doi: 10.1167/8.3.13.Google Scholar
  43. Whitney, D., & Cavanagh, P. (2000). The position of moving objects. Science, 289, 1107a.PubMedCrossRefGoogle Scholar
  44. Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40, 137–149.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Public LawUniversity of TartuTallinnEstonia
  2. 2.Institute of PsychologyUniversity of TartuTartuEstonia

Personalised recommendations