Advertisement

Psychological Research

, Volume 75, Issue 6, pp 452–465 | Cite as

The role of saccades in multitasking: towards an output-related view of eye movements

  • Lynn HuesteggeEmail author
Review Paper

Abstract

The present paper presents an overview of research on the role of saccades in multitasking. Multitasking is known to cause performance costs in terms of increased response times and/or error rates. However, most of the previous research on multitasking was focused on manual and vocal action demands, and the role of eye movements has been largely neglected. As a consequence, saccade execution was mainly considered with respect to its functional role in gathering new visual information (input side of information processing). However, several more recent experiments confirmed that saccades both exhibit and cause dual-task costs in the context of other actions and should thus also be regarded as a response modality (output side of information processing). Theoretical implications as well as several open issues for future research will be outlined.

Keywords

Stimulus Onset Asynchrony Manual Response Simon Effect Psychological Refractory Period Saccade Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allport, D. A. (1980). Attention and performance. In G. L. Claxton (Ed.), Cognitive psychology: new directions (pp. 112–153). London: Routledge.Google Scholar
  2. Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV (pp. 421–452). Cambridge: MIT Press.Google Scholar
  3. Baker, J. T., Donoghue, J. P., & Sanes, J. N. (1999). Gaze direction modulates finger movement activation patterns in human cerebral cortex. Journal of Neuroscience, 19, 10044–10052.PubMedGoogle Scholar
  4. Battaglia-Mayer, A., Archambault, P. S., & Caminiti, R. (2006). The cortical network for eye-hand coordination and its relevance to understanding motor disorders of parietal patients. Neuropsychologia, 44, 2607–2620.PubMedCrossRefGoogle Scholar
  5. Battaglia-Mayer, A., Ferraina, S., Mitsuda, T., Marconi, B., Genovesio, A., Onorati, P., et al. (2000). Early coding of reaching in the parietooccipital cortex. Journal of Neurophysiology, 83, 2374–2391.PubMedGoogle Scholar
  6. Bekkering, H., Adam, J. J., Kingma, H., Huson, A., & Whiting, H. T. A. (1994). Reaction time latencies of eye and hand movements in single- and dual-task conditions. Experimental Brain Research, 97, 471–476.CrossRefGoogle Scholar
  7. Bekkering, H., Adam, J. J., van den Aarssen, A., Kingma, H., & Whiting, H. T. (1995). Interference between saccadic eye and goal-directed hand movements. Experimental Brain Research, 106, 475–484.CrossRefGoogle Scholar
  8. Bekkering, H., & Sailer, U. (2002). Commentary: coordination of eye and hand in time and space. Progress in Brain Research, 140, 365–373.PubMedCrossRefGoogle Scholar
  9. Boot, W. R., Kramer, A. F., Becic, E., Wiegmann, D. A., & Kubose, T. (2006). Detecting transient changes in dynamic displays: the more you look, the less you see. Human Factors, 48, 759–773.PubMedCrossRefGoogle Scholar
  10. Botvinick, M., Braver, T., Barch, D., Carter, C., & Cohen, J. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRefGoogle Scholar
  11. Broadbent, D. E. (1982). Task combination and selective intake of information. Acta Psychologica, 50, 253–290.PubMedCrossRefGoogle Scholar
  12. Brown, S. H., Kessler, K. R., Hefter, H., Cooke, J. D., & Freund, H.-J. (1993). Role of the cerebellum in visuomotor coordination. Experimental Brain Research, 94, 478–488.CrossRefGoogle Scholar
  13. Buetti, S., & Kerzel, D. (2010). Effects of saccades and response type on the Simon effect: if you look at the stimulus, the Simon effect may be gone. The Quarterly Journal of Experimental Psychology, 63, 2172–2189.PubMedCrossRefGoogle Scholar
  14. Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor transformations for reaching. Nature, 416, 632–636.PubMedCrossRefGoogle Scholar
  15. Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: the psychological refractory period and perfect time-sharing. Psychological Review, 108, 847–869.PubMedCrossRefGoogle Scholar
  16. Carbone, E., & Schneider, W. X. (2010). The control of stimulus-driven saccades is subject not to central, but to visual attention limitations. Attention, Perception, and Psychophysics, 72, 2168–2175.Google Scholar
  17. Carey, D. P. (2000). Eye-hand coordination: eye to hand or hand to eye? Current Biology, 10, 416–419.CrossRefGoogle Scholar
  18. Crawford, J. D., Medendorp, W. P., & Marotta, J. J. (2004). Spatial transformations for eye-hand coordination. Journal of Neurophysiology, 92, 10–19.PubMedCrossRefGoogle Scholar
  19. Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets in task switching? Journal of Experimental Psychology Learning, Memory, and Cognition, 32, 1221–1233.PubMedCrossRefGoogle Scholar
  20. Epelboim, J., Steinman, R. M., Kowler, E., Pizlo, Z., Erkelens, C. J., & Collewijn, H. (1997). Gaze-shift dynamics in two kinds of sequential looking tasks. Vision Research, 37, 2597–2607.PubMedCrossRefGoogle Scholar
  21. Evens, D. R., & Ludwig, C. J. (2010). Dual-task costs and benefits in anti-saccade performance. Experimental Brain Research, 205, 545–557.CrossRefGoogle Scholar
  22. Fagot, C., & Pashler, H. (1992). Making two responses to a single object: implications for the central attentional bottleneck. Journal of Experimental Psychology Human Perception and Performance, 18, 1058–1079.PubMedCrossRefGoogle Scholar
  23. Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: the psychology of looking and seeing. Oxford: Oxford University Press.Google Scholar
  24. Hazeltine, E., Ruthruff, E., & Remington, R. W. (2006). The role of input and output modality pairings in dual-task performance: evidence for content-dependent central interference. Cognitive Psychology, 52, 291–345.PubMedCrossRefGoogle Scholar
  25. Henderson, J. M. (2005). Human gaze control during real-world scene perception. Trends in Cognitive Science, 7, 498–504.CrossRefGoogle Scholar
  26. Herman, L. M., & Kantowitz, B. H. (1970). The psychological refractory period effect: only half the double-stimulation story? Psychological Bulletin, 73, 74–88.CrossRefGoogle Scholar
  27. Hodgson, T. L., Müller, H. J., & O’Leary, M. J. (1999). Attentional localization prior to simple and directed manual responses. Perception & Psychophysics, 61, 308–321.CrossRefGoogle Scholar
  28. Hommel, B. (1998). Automatic stimulus-response translation in dual-task performance. Journal of Experimental Psychology Human Perception and Performance, 24, 1368–1384.PubMedCrossRefGoogle Scholar
  29. Horstmann, A., & Hoffmann, K. P. (2005). Target selection in eye-hand coordination: do we reach to where we look or do we look to where we reach? Experimental Brain Research, 167, 187–195.CrossRefGoogle Scholar
  30. Huestegge, L. (2010). Effects of vowel length on gaze durations in silent and oral reading. Journal of Eye Movement Research, 3(5):5, 1–18.Google Scholar
  31. Huestegge, L., & Adam, J. J. (2011). Oculomotor interference during manual response preparation: evidence from the response cueing paradigm. Attention, Perception, and Psychophysics, 73, 702–707.CrossRefGoogle Scholar
  32. Huestegge, L., & Koch, I. (2009). Dual-task crosstalk between saccades and manual responses. Journal of Experimental Psychology Human Perception and Performance, 35, 352–362.PubMedCrossRefGoogle Scholar
  33. Huestegge, L., & Koch, I. (2010a). Crossmodal action selection: evidence from dual-task compatibility. Memory and Cognition, 38, 493–501.CrossRefGoogle Scholar
  34. Huestegge, L., & Koch, I. (2010b). Fixation disengagement enhances peripheral perceptual processing: evidence for a perceptual gap effect. Experimental Brain Research, 201, 631–640.CrossRefGoogle Scholar
  35. Huestegge, L., Radach, R., Corbic, D., & Huestegge, S. M. (2009). Oculomotor and linguistic determinants of reading development: a longitudinal study. Vision Research, 49, 2948–2959.PubMedCrossRefGoogle Scholar
  36. Huestegge, L., Skottke, E.-M., Anders, S., Debus, G., & Müsseler, J. (2010). The development of hazard perception: dissociation of visual orientation and hazard processing. Transportation Research, 13F, 1–8.Google Scholar
  37. Irwin, D. E., & Thomas, L. E. (2007). The effect of saccades on number processing. Perception and Psychophysics, 69, 450–458.PubMedCrossRefGoogle Scholar
  38. Johansson, R. S., Westling, G., Backstrom, A., & Flanagan, J. R. (2001). Eye-hand coordination in object manipulation. The Journal of Neuroscience, 21, 6917–6932.PubMedGoogle Scholar
  39. Jonikaitis, D. & Deubel, H. (2011). Parallel and independent allocation of attention to eye and hand movement goals. Psychological Science (in press).Google Scholar
  40. Jonikaitis, D., Schubert, T., & Deubel, H. (2010). Preparing coordinated eye and hand movements: dual task costs are not attentional. Journal of Vision, 10(14), 1–17.CrossRefGoogle Scholar
  41. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: from eye fixations to comprehension. Psychological Review, 87, 329–354.PubMedCrossRefGoogle Scholar
  42. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice Hall.Google Scholar
  43. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., et al. (2010). Control and interference in task switching––a review. Psychological Bulletin, 136, 849–874.PubMedCrossRefGoogle Scholar
  44. Kinsbourne, M. (1981). Single channel theory. In D. H. Holding (Ed.), Human skills (pp. 65–89). Chichester: Wiley.Google Scholar
  45. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: the influence of past, present, and future words on fixation durations. Journal of Experimental Psychology General, 135, 12–35.PubMedCrossRefGoogle Scholar
  46. Koch, I. (2009). The role of crosstalk in dual-task performance: evidence from manipulating response-set overlap. Psychological Research, 73, 417–424.PubMedCrossRefGoogle Scholar
  47. Kunar, M. A., Carter, R., Cohen, M., & Horowitz, T. S. (2008). Telephone conversation impairs sustained visual attention via a central bottleneck. Psychonomic Bulletin and Review, 15, 1135–1140.PubMedCrossRefGoogle Scholar
  48. Land, M. F. (2005). Eye-hand coordination learning a new trick. Current Biology, 15, 955–956.CrossRefGoogle Scholar
  49. Land, M. F., & Hayhoe, M. M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41, 3559–3565.PubMedCrossRefGoogle Scholar
  50. Levy, J., & Pashler, H. (2001). Is dual-task slowing instruction dependent. Journal of Experimental Psychology Human Perception and Performance, 27, 862–869.PubMedCrossRefGoogle Scholar
  51. Levy, J., Pashler, H., & Boer, E. (2006). Central interference in driving: is there any stopping the psychological refractory period? Psychological Science, 17, 228–235.PubMedCrossRefGoogle Scholar
  52. Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434.PubMedCrossRefGoogle Scholar
  53. Lünenburger, L., Kutz, D. F., & Hoffmann, K. P. (2000). Influence of arm movements on saccades in humans. European Journal of Neuroscience, 12, 4107–4116.PubMedCrossRefGoogle Scholar
  54. Malmstrom, F. V., Reed, L. E., & Weber, R. J. (1983). Saccadic eye movements during a concurrent auditory task. Bulletin of the Psychonomic Society, 27, 31–34.Google Scholar
  55. Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9, 296–304.PubMedCrossRefGoogle Scholar
  56. Mather, J., & Fisk, J. (1985). Orienting to targets by looking and pointing: parallels and interactions in ocular and manual performance. Quarterly Journal of Experimental Psychology, 37A, 315–338.Google Scholar
  57. Mather, J. A., & Lackner, J. R. (1980). Visual tracking of active and passive movements of the hand. Quarterly Journal of Experimental Psychology, 32, 307–315.PubMedCrossRefGoogle Scholar
  58. Mather, J. A., & Putchat, C. (1983). Parallel ocular and manual tracking responses to a continuously moving visual target. Journal of Motor Behavior, 15, 29–38.PubMedGoogle Scholar
  59. McLeod, P., & Posner, M. I. (1984). Privileged loops from percept to act. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and Performance X. Control of language processes (pp. 55–66), Hove, UK: Lawrence Erlbaum Associates.Google Scholar
  60. Megaw, E. D., & Armstrong, W. (1973). Individual and simultaneous tracking of a step input by the horizontal saccadic eye movement and manual control systems. Journal of Experimental Psychology, 100, 18–28.PubMedCrossRefGoogle Scholar
  61. Meyer, D. E., & Kieras, D. W. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 3–65.Google Scholar
  62. Miller, J. (1982). Discrete versus continuous models of human information processing: in search of partial output. Journal of Experimental Psychology Human Perception and Performance, 8, 273–296.PubMedCrossRefGoogle Scholar
  63. Müsseler, J., Aschersleben, G., Arning, K., & Proctor, R. (2009). Reversed effects of spatial compatibility in natural scenes. American Journal of Psychology, 122, 325–336.PubMedGoogle Scholar
  64. Navon, D. (1984). Resources––A theoretical soupstone? Psychological Review, 91, 216–234.CrossRefGoogle Scholar
  65. Navon, D. (1985). Attention division or attention sharing. In M. I. Posner & O. S. M. Marin (Eds.), Attention and performance XI (pp. 133–146). Hillsdale, NJ: Erlbaum.Google Scholar
  66. Navon, D., & Gopher, D. (1979). On the economy of the human information processing system. Psychological Review, 86, 214–255.CrossRefGoogle Scholar
  67. Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology Human Perception and Performance, 13, 435–448.PubMedCrossRefGoogle Scholar
  68. Navon, D., & Miller, J. (2002). Queuing or sharing. A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44, 193–251.PubMedCrossRefGoogle Scholar
  69. Neumann, O. (1987). Beyond capacity: a functional view of attention. In H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and action (pp. 361–394). Hillsdale: Erlbaum.Google Scholar
  70. Niechwiej-Szwedo, E., McIlroy, W. E., Green, R. E. A., & Verrier, M. C. (2005). The effect of directional compatibility on the response latencies of ocular and manual movements. Experimental Brain Research, 162, 220–229.CrossRefGoogle Scholar
  71. Nitschke, M. F., Arp, T., Stavrou, G., Erdmann, C., & Heide, W. (2005). The cerebellum in the cerebro-cerebellar network fort he control of eye and hand movements––an fMRI study. Progress in Brain Research, 148, 151–164.PubMedCrossRefGoogle Scholar
  72. Norman, D. A., & Bobrow, D. G. (1975). On data limited and resource limited processes. Cognitive Psychology, 7, 44–64.CrossRefGoogle Scholar
  73. Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116, 220–244.PubMedCrossRefGoogle Scholar
  74. Pashler, H. (1998). The psychology of attention. Cambridge: MIT Press.Google Scholar
  75. Pashler, H., Carrier, M., & Hoffman, J. (1993). Saccadic eye movements and dual-task interference. Quarterly Journal of Experimental Psychology, 46A, 51–82.Google Scholar
  76. Pelz, J., Hayhoe, M. M., & Loeber, R. (2001). The coordination of eye, head, and hand movements in a natural task. Experimental Brain Research, 139, 266–277.CrossRefGoogle Scholar
  77. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedCrossRefGoogle Scholar
  78. Posner, M. I., Nissen, M. J., & Ogden, W. C. (1978). Attended and unattended processing modes: the role of set for spatial location. In H. L. Pick Jr. & I. J. Saltzman (Eds.), Modes of perceiving and processing information (pp. 137–157). Hillsdale: Erlbaum.Google Scholar
  79. Prablanc, C., Echallier, J. E., Jeannerod, M., & Komilis, E. (1979a). Optimal response of eye and hand motor systems in pointing at a visual target. II. Static and dynamic visual cues in the control of hand movement. Biological Cybernetics, 35, 183–187.PubMedCrossRefGoogle Scholar
  80. Prablanc, C., Echallier, J. F., Komilis, E., & Jeannerod, M. (1979b). Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biological Cybernetics, 35, 113–124.PubMedCrossRefGoogle Scholar
  81. Pratt, J., Bekkering, H., Abrams, R. A., & Adam, J. (1999). The gap effect for spatially oriented responses. Acta Psychologica, 102, 1–12.PubMedCrossRefGoogle Scholar
  82. Ramnani, N., Toni, I., Passingham, R. E., & Haggard, P. (2001). The cerebellum and parietal cortex play a specific role in coordination: a PET study. NeuroImage, 14, 899–911.PubMedCrossRefGoogle Scholar
  83. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372–422.PubMedCrossRefGoogle Scholar
  84. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62, 1457–1506.CrossRefGoogle Scholar
  85. Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40.PubMedCrossRefGoogle Scholar
  86. Roberts, R. J., Hager, L. D., & Heron, C. (1994). Prefrontal cognitive processes: working memory and inhibition in the antisaccade task. Journal of Experimental Psychology General, 123, 374–393.CrossRefGoogle Scholar
  87. Rogers, R. D., & Monsell, S. (1995). The cost of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology General, 124, 207–231.CrossRefGoogle Scholar
  88. Ruthruff, E., Hazeltine, E., & Remington, R. W. (2005). What causes residual dual-task interference after practice? Psychological Research, 70, 494–503.PubMedCrossRefGoogle Scholar
  89. Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: an integrated theory of concurrent multitasking. Psychological Review, 115, 101–130.PubMedCrossRefGoogle Scholar
  90. Saslow, M. G. (1967). Effects of components of displacement-step stimuli upon latency for saccadic eye movement. Journal of the Optical Society of America, 57, 1024–1029.PubMedCrossRefGoogle Scholar
  91. Schneider, W. X., & Deubel, H. (2002). Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: a review of recent findings and new evidence from stimulus-driven saccade control. In W. Prinz & B. Hommel (Eds.), Attention and performance XIX: common mechanisms in perception and action (pp. 609–627). Oxford: Oxford University Press.Google Scholar
  92. Shaffer, L. H. (1975). Multiple attention in continuous verbal tasks. In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and performance V (pp. 157–167). New York: Academic Press.Google Scholar
  93. Sharikadze, M., Cong, D. K., Staude, G., Deubel, H., & Wolf, W. (2009). Dual-tasking: is manual tapping independent of concurrently executed saccades? Brain Research, 1283, 41–49.PubMedCrossRefGoogle Scholar
  94. Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81, 174–176.PubMedCrossRefGoogle Scholar
  95. Snyder, L. H., Batista, A. P., & Andersen, R. A. (2000). Saccade-related activity in the parietal reach region. Journal of Neurophysiology, 83, 1099–1102.PubMedGoogle Scholar
  96. Snyder, L. H., Calton, J. L., Dickinson, A. R., & Lawrence, B. M. (2002). Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement. Journal of Neurophysiology, 87, 2279–2286.PubMedGoogle Scholar
  97. Solomons, L. M., & Stein, G. (1896). Normal motor automatism. Psychological Review, 3, 492–512.CrossRefGoogle Scholar
  98. Spelke, E. S., Hirst, W., & Neisser, U. (1976). Skills of divided attention. Cognition, 4, 215–230.CrossRefGoogle Scholar
  99. Steinbach, M. J., & Held, R. (1968). Eye tracking of observer-generated target movements. Science, 161, 187–188.PubMedCrossRefGoogle Scholar
  100. Stelzel, C., Schumacher, E., Schubert, T., & D’Esposito, M. (2006). The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study. Psychological Research, 70, 514–525.PubMedCrossRefGoogle Scholar
  101. Stephan, D. N., & Koch, I. (2010). Central crosstalk in task switching: Evidence from manipulating input-output modality compatibility. Journal of Experimental Psychology Learning, Memory, and Cognition, 36, 1075–1081.PubMedCrossRefGoogle Scholar
  102. Strayer, D., Drews, F., & Johnston, W. (2003). Cell-phone induced failures of visual attention during simulated driving. Journal of Experimental Psychology Applied, 9, 23–32.PubMedCrossRefGoogle Scholar
  103. Stuyven, E., Van der Goten, K., Vandierendonck, A., Claeys, K., & Crevits, L. (2000). The effect of cognitive load on saccadic eye movements. Acta Psychologica, 104, 69–85.PubMedCrossRefGoogle Scholar
  104. Styles, E. A. (1997). The psychology of attention. Hove: Psychology Press.CrossRefGoogle Scholar
  105. Tibber, M. S., Grant, S., & Morgan, M. J. (2009). Oculomotor responses and visuospatial perceptual judgments compete for common limited resources. Journal of Vision, 9, 1–13.PubMedCrossRefGoogle Scholar
  106. Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology Human Perception and Performance, 29, 3–18.PubMedCrossRefGoogle Scholar
  107. Vandierendonck, A., Deschuyteneer, M., Depoorter, A., & Drieghe, D. (2008). Input monitoring and response selection as components of executive control in pro-saccades and anti-saccades. Psychological Research, 72, 1–11.PubMedCrossRefGoogle Scholar
  108. Vidoni, E. D., McCarley, J. S., Edwards, J. D., & Boyd, L. A. (2009). Manual and oculomotor performance develop contemporaneously but independently during continuous tracking. Experimental Brain Research, 195, 611–620.CrossRefGoogle Scholar
  109. Ward, A. (2004). Attention: a neuropsychological approach. New York: Psychology Press.Google Scholar
  110. Welford, A. T. (1952). The “psychological refractory period” and the timing of high-speed performance––a review and a theory. British Journal of Psychology, 434, 2–19.Google Scholar
  111. Wickens, C. D. (1980). The structure of attentional resources. In R. Nickerson (Ed.), Attention and performance VIII (pp. 239–257). Hillsdale: Erlbaum.Google Scholar
  112. Wickens, C. D. (1984). Processing resources in attention. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 63–102). Orlando: Academic Press.Google Scholar
  113. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3, 159–177.CrossRefGoogle Scholar
  114. Wright, R. D., & Ward, L. M. (2008). Orienting of Attention. New York: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of PsychologyRWTH Aachen UniversityAachenGermany

Personalised recommendations