Psychological Research

, Volume 76, Issue 2, pp 159–170 | Cite as

Mind and movement

Review

Abstract

Voluntary movements embrace both intentional, conscious and post-intentional, largely automatic processes. Here, we examine these types of processes and the relations between them during preparation and execution of voluntary movements. First, a general overview is given about how intentional and post-intentional components are interleaved to enable successful control of purposeful movements. Second, we briefly describe some post-intentional processes that are triggered by preceding intentions. Third, we discuss findings according to which such post-intentional processes or their results can become accessible to conscious awareness. Under such conditions, automatic and conscious processes can co-occur. We show that intentional interventions into post-intentional processes can be overridden by automatic processes, can interfere with automatic processes and can be independent so that their outcomes add to those of automatic processes.

References

  1. Aglioti, S., DeSouza, J. F. X., Goodale, M. A., et al. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5, 679–685.PubMedCrossRefGoogle Scholar
  2. Arend, I., Johnston, S., Shapiro, K., et al. (2006). Task-irrelevant motion and flicker attenuate the attentional blink. Psychonomic Bulletin and Review, 13, 600–607.PubMedCrossRefGoogle Scholar
  3. Azanon, E., Longo, M. R., Soto-Faraco, S., Haggard, P., et al. (2010). The posterior parietal cortex remaps touch into external space. Current Biology, 20, 1304–1309.PubMedCrossRefGoogle Scholar
  4. Baumeister, R. F. (1984). Choking under pressure: Self-consciousness and paradoxical effects of incentives on skillful performance. Journal of Personality and Social Psychology, 46, 610–620.PubMedCrossRefGoogle Scholar
  5. Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130, 701–725.CrossRefGoogle Scholar
  6. Beilock, S. L., Carr, T. H., MacMahon, C., Starkes, J. L., et al. (2002). When paying attention becomes counterproductive: Impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. Journal of Experimental Psychology: Applied, 8, 6–16.PubMedCrossRefGoogle Scholar
  7. Bizzi, E., Accornero, N., Chapple, W., Hogan, N., et al. (1984). Posture control and trajectory formation during arm movement. Journal of Neuroscience, 4, 2738–2744.PubMedGoogle Scholar
  8. Bridgeman, B., Kirch, M., Sperling, A., et al. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics, 29, 336–342.CrossRefGoogle Scholar
  9. Bridgeman, B., Lewis, S., Heit, G., Nagle, M., et al. (1979). Relation between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance, 5, 692–700.PubMedCrossRefGoogle Scholar
  10. Bridgeman, B., Peery, S., Anand, S., et al. (1997). Interaction of cognitive and sensorimotor maps of visual space. Perception and Psychophysics, 59, 456–469.PubMedCrossRefGoogle Scholar
  11. Castiello, U., Paulignan, Y., Jeannerod, M., et al. (1991). Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain, 114, 2639–2655.PubMedCrossRefGoogle Scholar
  12. Chase, R. A., Harvey, S., Standfast, S., Rapin, I., Sutton, S., et al. (1961). Studies on sensory feedback I: Effect of delayed auditory feedback on speech and key tapping. Quarterly Journal of Experimental Psychology, 13, 141–152.CrossRefGoogle Scholar
  13. Creem, S. H., & Proffitt, D. R. (2001). Defining the cortical visual systems: “What”, “Where”, and “How”. Acta Psychologica, 107, 43–68.PubMedCrossRefGoogle Scholar
  14. Davidson, P. R., Jones, R. D., Sirisena, H. R., Andreae, J. H., et al. (2000). Detection of adaptive inverse models in the human motor system. Human Movement Science, 19, 761–795.CrossRefGoogle Scholar
  15. Day, B. I., & Lyon, I. N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Experimental Brain Research, 130, 159–168.CrossRefGoogle Scholar
  16. Fiehler, K., Bannert, M. M., Bischoff, M., Blecker, C., Stark, R., Vaitl, D., et al. (2011). Working memory maintenance of grasp–target information in the human posterior pariety cortex. Neuroimage, 54, 2401–2411.PubMedCrossRefGoogle Scholar
  17. Fiehler, K., Burke, M., Bien, S., Röder, B., Rösler, F., et al. (2009). The human dorsal action control system develops in the absence of vision. Cerebral Cortex, 19, 1–12.PubMedCrossRefGoogle Scholar
  18. Fiehler, K., Burke, M., Engel, A., Bien, S., Rösler, F., et al. (2008). Kinesthetic working memory and action control within the dorsal stream. Cerebral Cortex, 18, 243–253.PubMedCrossRefGoogle Scholar
  19. Fourneret, P., & Jeannerod, M. (1998). Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia, 36, 1133–1140.PubMedCrossRefGoogle Scholar
  20. Franck, N., Farrer, C., Georgieff, N., Marie-Cardine, M., Dalery, J., d’Amato, T., et al. (2001). Defective recognition of one’s own actions in patients with schizophrenia. American Journal of Psychiatry, 158, 454–459.PubMedCrossRefGoogle Scholar
  21. Franz, V. H. (2001). Acrion does not resist visual illusions. Trends in Cognitive Sciences, 5, 457–459.PubMedCrossRefGoogle Scholar
  22. Franz, V. H., & Gegenfurtner, K. (2008). Grasping visual illusions: consistent data and no dissociation. Cognitive Neuropsychology, 25, 920–950.CrossRefGoogle Scholar
  23. Franz, V. H., Hesse, C., Kollath, S., et al. (2009). Visual illusions, delayed grasping, and memory: No shift from dorsal to ventral control. Neuropsychologia, 47, 1518–1531.PubMedCrossRefGoogle Scholar
  24. Frith, C. D., Blakemore, S.-J., Wolpert, D. M., et al. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London: Series B, 355, 1771–1788.CrossRefGoogle Scholar
  25. Frith, C. D., Friston, K., Liddle, P. F., Frackowiak, R. S., et al. (1991). WIlled action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society B: Biological Sciences, 244, 241–246.PubMedCrossRefGoogle Scholar
  26. Gallagher, A. G., McClure, N., McGuigan, J., Ritchie, K., Sheehy, N. P., et al. (1998). An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills. Endoscopy, 30, 617–620.PubMedCrossRefGoogle Scholar
  27. Gelfan, S., & Carter, S. (1967). Muscle sense in man. Experimental Neurology, 18, 469–473.PubMedCrossRefGoogle Scholar
  28. Ghilardi, M., Ghez, C., Dhawan, V., Moeller, J., Mentis, M., Nakamura, T., et al. (2000). Patterns of regional brain activation associated with different forms of motor learning. Brain Research, 871, 127–145.PubMedCrossRefGoogle Scholar
  29. Goodale, M. A., Pélisson, D., Prablanc, C., et al. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 320, 748–750.PubMedCrossRefGoogle Scholar
  30. Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 14, 203–211.PubMedCrossRefGoogle Scholar
  31. Goodwin, G. M., McCloskey, D. I., Matthews, P. B. C., et al. (1972). The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain, 95, 705–748.PubMedCrossRefGoogle Scholar
  32. Gosselin-Kessiby, N., Kalaska, J. F., Messier, J., et al. (2009). Evidence for a proprioception-based rapid on-line error correction mechanism for hand orientation during reaching movements in blind subjects. Journal of Neuroscience, 29, 3485–3496.PubMedCrossRefGoogle Scholar
  33. Gray, R. (2004). Attending to the execution of a complex sensorimotor skill: Expertise differences, choking, and slumps. Journal of Experimental Psychology: Applied, 10, 42–54.PubMedCrossRefGoogle Scholar
  34. Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.PubMedCrossRefGoogle Scholar
  35. Gucciardi, D. F., & Dimmock, J. A. (2008). Choking under pressure in sensorimotor skills: Conscious processing or depleted attentional resources? Psychology of Sport and Exercise, 9, 45–59.CrossRefGoogle Scholar
  36. Haffenden, A. M., & Goodale, M. A. (1998). The effect of pictorial illusion on prehension and perception. Journal of Cognitive Neuroscience, 10, 122–136.PubMedCrossRefGoogle Scholar
  37. Hegele, M., & Heuer, H. (2010a). The impact of augmented information on visuo-motor adaptation in younger and older adults. PLoS ONE, 5(8), e12071.PubMedCrossRefGoogle Scholar
  38. Hegele, M., & Heuer, H. (2010b). Adaptation to a direction-dependent visuomotor gain in the young and elderly. Psychological Research, 74, 21–34.PubMedCrossRefGoogle Scholar
  39. Heuer, H. (1996). Coordination. In H. Heuer & S.W. Keele (Eds.), Handbook of perception and action. Vol. 2Motor skills (pp. 121–180). London: Academic Press.Google Scholar
  40. Heuer, H., & Hegele, M. (2008). Adaptation to visuo-motor rotations in younger and older adults. Psychology and Aging, 23, 190–202.PubMedCrossRefGoogle Scholar
  41. Heuer, H., & Klein, W. (2006). The modulation of intermanual interactions during the specification of the directions of bimanual movements. Experimental Brain Research, 169, 162–181.CrossRefGoogle Scholar
  42. Inoue, K., Kawashima, R., Satoh, K., Kinomura, S., Sugiura, M., Goto, R., et al. (2000). A PET study of visuomotor learning under optical rotation. Neuroimage, 11, 505–516.PubMedCrossRefGoogle Scholar
  43. Johnson, H., & Haggard, P. (2005). Motor awareness without perceptual awareness. Neuropsychologia, 43, 227–237.PubMedCrossRefGoogle Scholar
  44. Jordan, M. I. (1996). Computational aspects of motor control and motor learning. In H. Heuer, S. W. Keele (Eds.), Handbook of perception and action. Vol. 2: Motor skills (pp. 71–120). London: Academic Press.Google Scholar
  45. Kalveram, K.-Th. (1998). Wie das Individuum mit seiner Umwelt interagiert. Lengerich: Pabst.Google Scholar
  46. Knoblich, G., & Kircher, T. T. J. (2004). Deceiving oneself about being in control: Conscious detection of changes in visuo-motor coupling. Journal of Experimental Psychology: Human Perception and Performance, 30, 657–666.PubMedCrossRefGoogle Scholar
  47. Komilis, E., Pelisson, D., Prablanc, C., et al. (1993). Error processing in pointing at randomly feedback-induced double-step stimuli. Journal of Motor Behavior, 25, 299–308.PubMedCrossRefGoogle Scholar
  48. Krakauer, J. W., Ghilardi, M. F., Mentis, M., Barnes, A., Veytsman, M., Eidelberg, D., et al. (2004). Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. Journal of Neurophysiology, 91, 924–933.PubMedCrossRefGoogle Scholar
  49. Leube, D., Knoblich, G., Erb, M., Grodd, W., Bartels, M., Kircher, T. T. J., et al. (2003). The neural correlates of perceiving one’s own movements. Neuroimage, 20, 2084–2090.PubMedCrossRefGoogle Scholar
  50. Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. Journal of Neuroscience, 26, 3642–3645.PubMedCrossRefGoogle Scholar
  51. Mechsner, F. (2004). A psychological approach to human voluntary movements. Journal of Motor Behavior, 36, 355–370.PubMedCrossRefGoogle Scholar
  52. Metzger, W. (1965). Über die Notwendigkeit kybernetischer Vorstellungen in der Theorie des Verhaltens. Zeitschrift für Psychologie, 171, 336–342.PubMedGoogle Scholar
  53. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
  54. Müsseler, J., & Sutter, C. (2009). Perceiving one’s own movements when using a tool. Consciousness and Cognition, 18, 359–365.PubMedCrossRefGoogle Scholar
  55. Neumann, O. (1984). Automatic processing: A review of recent findings and a plea for an old theory. In: W. Prinz, & A.F. Sanders (Eds.), Cognition and motor processes (pp. 255–293). Berlin: Springer.Google Scholar
  56. Newell, K. M., & van Emmerik, R. E. A. (1989). The acquisition of coordination: preliminary analysis of learning to write. Human Movement Science, 8, 17–32.CrossRefGoogle Scholar
  57. Pélisson, D., Prablanc, C., Goodale, M. A., Jeannerod, M., et al. (1986). Visual control of reaching movements without vision of the limb II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Experimental Brain Research, 62, 303–311.CrossRefGoogle Scholar
  58. Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., et al. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nature Neuroscience, 3, 729–736.PubMedCrossRefGoogle Scholar
  59. Pisella, L., Sergio, L., Blangero, A., Torchin, H., Vighetto, A., Rossetti, Y., et al. (2009). Optic ataxia and the function of the dorsal stream: contributions to perception and action. Neuropsychologia, 47, 3033–3044.PubMedCrossRefGoogle Scholar
  60. Prablanc, C., & Martin, O. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology, 67, 455–469.PubMedGoogle Scholar
  61. Prinz, W. (1992). Why don’t we perceive our brain states? European Journal of Cognitive Psychology, 4, 1–20.CrossRefGoogle Scholar
  62. Redding, G. M., & Wallace, B. (1993). Adaptive coordination and alignment of eye and hand. Journal of Motor Behavior, 25, 75–88.PubMedCrossRefGoogle Scholar
  63. Roll, J. P., & Vedel, J. P. (1982). Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Experimental Brain Research, 47, 177–190.CrossRefGoogle Scholar
  64. Rossetti, Y., Pisella, L., Pelisson, D., et al. (2000). Eye blindness and hand sight: temporal aspects of visuo-motor processing. Visual Cognition, 7, 785–809.CrossRefGoogle Scholar
  65. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.CrossRefGoogle Scholar
  66. Schmidt, R. A., McGown, C., Quinn, J. T., Hawkins, B., et al. (1986). Unexpected inertial loading in rapid reversal movements: violations of equifinality. Human Movement Science, 5, 263–273.CrossRefGoogle Scholar
  67. Slachevsky, A., Pillon, B., Fourneret, P., Pradat-Diehl, P., Jeannerod, M., Dubois, B., et al. (2001). Preserved adjustment but impaired awareness in a sensory-motor conflict following prefrontal lesions. Journal of Cognitive Neuroscience, 13, 332–340.PubMedCrossRefGoogle Scholar
  68. Smeets, J. B. J., & Brenner, E. (2006). 10 years of illusions. Journal of Experimental Psychology: Human Perception and Performance, 32, 1501–1504.PubMedCrossRefGoogle Scholar
  69. Striemer, C. L., Yukovsky, J., Goodale, M. A., et al. (2010). Can intention override the “automatic pilot”. Experimental Brain Research, 202, 623–632.CrossRefGoogle Scholar
  70. Sülzenbrück, S., & Heuer, H. (2009a). Learning the visuomotor transformation of virtual and real sliding levers: Simple approximations of complex transformations. Experimental Brain Research, 195, 153–165.CrossRefGoogle Scholar
  71. Sülzenbrück, S., & Heuer, H. (2009b). Functional independence of explicit and implicit motor adjustments. Consciousness and Cognition, 18, 145–159.PubMedCrossRefGoogle Scholar
  72. Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31, 299–337.PubMedCrossRefGoogle Scholar
  73. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: MIT Press.Google Scholar
  74. Verwey, W. B., & Heuer, H. (2007). Nonlinear visuomotor transformations: locus and modularity. Quarterly Journal of Experimental Psychology, 60, 1629–1659.CrossRefGoogle Scholar
  75. Voigt, E. (1933). Über den Aufbau von Bewegungsgestalten. Neue Psychologische Studien, 9, 1–32.Google Scholar
  76. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.PubMedCrossRefGoogle Scholar
  77. Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584.PubMedCrossRefGoogle Scholar
  78. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRefGoogle Scholar
  79. Woollacott, M. H., & Jensen, J. L. (1996). Posture and locomation. In H. Heuer & S. W. Keele (Eds.), Handbook of perception and action. Vol. 2: Motor skills (pp. 333–403). London: Academic Press.Google Scholar
  80. Zatorre, R. J., Chen, J. L., Penhune, V. B., et al. (2007). When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews: Neuroscience, 8, 547–558.PubMedCrossRefGoogle Scholar
  81. Zattara, M., & Bouisset, S. (1986). Chronometric analysis of the posturo-kinetic programming of voluntary movement. Journal of Motor Behavior, 18, 215–223.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.IfADo - Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany

Personalised recommendations