Psychological Research

, Volume 75, Issue 4, pp 290–306 | Cite as

Two-digit number processing: holistic, decomposed or hybrid? A computational modelling approach

  • K. Moeller
  • S. Huber
  • H.-C. Nuerk
  • K. Willmes
Original Article


Currently, there are three competing theoretical accounts concerning the nature of two-digit number magnitude representation: a holistic, a strictly decomposed, and a hybrid model. Observation of the unit-decade compatibility effect (Nuerk et al. in Cognition 82:B25–B33, 2001) challenged the view of two-digit number magnitude to be represented as one integrated entity. However, at the moment there is no study distinguishing between the decomposed and the hybrid model. The present study addressed this issue using a computational modelling approach. Three network models complying with the constraints of all three theoretical models were programmed and trained on two-digit number comparison. Models were compared as to how well they accounted for empirical effects in the most parsimonious way. Generally, this evaluation indicated that the empirical data were simulated best by the strictly decomposed model. Implications of these results for our understanding of the nature of human number magnitude representation are discussed.


Hybrid Model Compatibility Effect Holistic Model Mental Number Line Holistic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

426_2010_307_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)


  1. Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: evidence for a linear subjective number scale. Psychological Science, 12, 238–243.PubMedCrossRefGoogle Scholar
  2. Brysbaert, M. (1995). Arabic number reading: on the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452.CrossRefGoogle Scholar
  3. Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1–44.PubMedCrossRefGoogle Scholar
  4. Cantlon, J. F., Cordes, S., Libertus, M. E., & Brannon, E. M. (2009). Numerical abstraction: It ain’t broke. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 331–332.Google Scholar
  5. Chrisomalis, S. (2004). A cognitive typology for numerical notation. Cambridge Archaeological Journal, 14, 37–52.CrossRefGoogle Scholar
  6. Cipolotti, L., & Butterworth, B. (1995). Towards a multiroute model of number processing: impaired number transcoding with the preservation of calculation skills. Journal of Experimental Psychology: General, 124, 375–390.CrossRefGoogle Scholar
  7. Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53, 307–314.PubMedCrossRefGoogle Scholar
  8. Cohen Kadosh, R., & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–373.PubMedCrossRefGoogle Scholar
  9. Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16, 16–36.CrossRefGoogle Scholar
  10. Dehaene, S. (2009). The case for a notation-independent representation of number. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 333–335.Google Scholar
  11. Dehaene, S., & Changeux, J.-P. (1993). Development of elementary numerical abilities: A neural model. Journal of Cognitive Neuroscience, 5, 390–407.CrossRefGoogle Scholar
  12. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  13. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal knowledge and quantitative knowledge of arithmetic. Cortex, 33, 219–250.PubMedCrossRefGoogle Scholar
  14. Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641.PubMedCrossRefGoogle Scholar
  15. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.PubMedCrossRefGoogle Scholar
  16. Deloche, G., & Willmes, K. (2000). Cognitive neuropsychological models of adult calculation and number processing: on the role of the surface format of numbers. European Child and Adolescent Psychiatry, 9, 27–40.CrossRefGoogle Scholar
  17. Domahs, F., Delazer, M., & Nuerk, H.-C. (2006). What makes multiplication facts difficult. Problem size or neighbourhood consistency? Experimental Psychology, 53, 275–286.PubMedGoogle Scholar
  18. Frobisher, L. (1999). Primary school children’s knowledge of odd and even numbers. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 31–48). London: Cassell.Google Scholar
  19. Ganor-Stern, D. (2009). Automatic numerical processing is based on an abstract representation. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 337–338.Google Scholar
  20. Ganor-Stern, D., Pinhas, M., & Tzelgov, J. (2009). Comparing two-digit numbers: the importance of being presented together. Quarterly Journal of Experimental Psychology, 62, 444–452.Google Scholar
  21. Grabner, R. H. (2009). Expertise in symbol-referent mapping. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 338–339.Google Scholar
  22. Grossberg, S., & Repin, D. V. (2003). A neural model of how the brain represents and compares multi-digit numbers: spatial and categorical processes. Neural Networks, 16, 1107–1140.PubMedCrossRefGoogle Scholar
  23. Harrington, P. B. (1993). Sigmoid transfer functions in backpropagation neural networks. Analytical Chemistry, 65, 2167–2168.CrossRefGoogle Scholar
  24. Hervás-Martínez, C., Gutiérrez, P. A., Fernández, J. C., Salcedo-Sanz, S., Portilla-Figueras, A., Pérez-Bellido, A., & Prieto, L. (2009). Hyperbolic tangent basis function neural network training by hybrid evolutionary programming for accurate short-term Wind Speed prediction. 2009 Ninth International Conference on Intelligent Systems Design and Applications, 30 November–02 December, Pisa, Italy.Google Scholar
  25. Hinrichs, J. V., Yurko, D. S., & Hu, J.-M. (1981). Two-digit number comparison: Use of place information. Journal of Experimental Psychology: Human Perception and Performance, 7, 890–901.CrossRefGoogle Scholar
  26. Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., & Gassner, A. (2008). Impairments of the mental number line for two-digit numbers in neglect. Cortex, 44, 429–438.PubMedCrossRefGoogle Scholar
  27. Knops, A. (2006). On the Structure and Neural Correlates of the Numerical Magnitude Representation and its Influence in the Assessment of Verbal Working Memory. Unpublished doctoral dissertation, University Aachen, Germany.Google Scholar
  28. Kucian, K., & Kaufmann, L. (2009). A developmental model of number representation. Commentary on Cohen Kadosh, R. & Walsh, V. (2009). Numerical representations in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 340–341.Google Scholar
  29. Levenson, E., Tsamir, P., & Tirosh, D. (2007). Neither even nor odd: Sixth grade students’ dilemmas regarding the parity of zero. The Journal of Mathematical Behavior, 26, 83–95.CrossRefGoogle Scholar
  30. McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.PubMedCrossRefGoogle Scholar
  31. McCloskey, M., & Lindemann, A. M. (1992). MATHNET: Preliminary results from a distributed model of arithmetic fact retrieval. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 365–409). North Holland: Elsevier.CrossRefGoogle Scholar
  32. Moeller, K., Fischer, M. H., Nuerk, H.-C., & Willmes, K. (2009). Sequential or parallel decomposed processing of two-digit numbers? Evidence from eye-tracking. Quarterly Journal of Experimental Psychology, 62, 323–334.Google Scholar
  33. Moyer, R. S., & Landauer, T. K. (1967). The time required for judgements of numerical inequality. Nature, 215, 1519–1520.PubMedCrossRefGoogle Scholar
  34. Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor modelling cognition: a bayesian approach. Psychonomic Bulletin & Review, 4, 79–95.Google Scholar
  35. Ngaopitakkul, A., & Kunakorn, A. (2009). Selection of proper activation functions in backpropagation neural networks algorithm for transformer internal fault locations. International Journal of Computer and Network Security, 1, 47–55.Google Scholar
  36. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC, linguistic markedness of response codes effect. The Quarterly Journal of Experimental Psychology, 57A, 835–863.Google Scholar
  37. Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33.PubMedCrossRefGoogle Scholar
  38. Nuerk, H.-C., Weger, U., & Willmes, K. (2002). A unit-decade compatibility effect in German number words. Current Psychology Letters: Behaviour, Brain, and Cognition, 2, 19–38.Google Scholar
  39. Nuerk, H.-C., Weger, U., & Willmes, K. (2004). On the perceptual generality of the unit-decade-compatibility effect. Experimental Psychology, 51, 72–79.PubMedCrossRefGoogle Scholar
  40. Nuerk, H.-C., & Willmes, K. (2005). On the magnitude representation of two digit numbers. Psychology Science, 47, 52–72.Google Scholar
  41. Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305.PubMedCrossRefGoogle Scholar
  42. Pixner, S., Moeller, K., Zuber, J., & Nuerk, H.-C. (2009). Decomposed but parallel processing of two-digit numbers in Austrian 1st graders. The Open Psychology Journal, 2, 40–48.Google Scholar
  43. Ratinckx, E., Nuerk, H.-C., van Dijk, J.-P., & Willmes, K. (2006). Effects of interhemispheric communication on two-digit number processing. Cortex, 42, 1128–1137.PubMedCrossRefGoogle Scholar
  44. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (pp. 318–362). Cambridge, MA: MIT Press.Google Scholar
  45. Verguts, T., & De Moor, W. (2005). Two-digit comparison decomposed, holistic or hybrid? Experimental Psychology, 52, 195–200.PubMedGoogle Scholar
  46. Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.PubMedCrossRefGoogle Scholar
  47. Verguts, T., & Fias, W. (2006). Lexical and syntactic structures in a connectionist model of reading multi-digit numbers. Connection Science, 18, 265–285.CrossRefGoogle Scholar
  48. Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin and Review, 12, 66–80.PubMedCrossRefGoogle Scholar
  49. Viscuso, S. R., Anderson, J. A., & Spoehr, K. T. (1989). Representing simple arithmetic in neural networks. In G. Tiberghien (Ed.), Advances in cognitive science (Vol. 2). Chichester (UK): Ellis Horwood.Google Scholar
  50. Wood, G., Mahr, M., & Nuerk, H.-C. (2005). Deconstructing and reconstructing the base-10 structure of Arabic numbers. Psychology Science, 47, 84–95.Google Scholar
  51. Wood, G., Nuerk, H.-C., & Willmes, K. (2006). Neural representations of two-digit numbers: A parametric fMRI study. NeuroImage, 46, 358–367.CrossRefGoogle Scholar
  52. Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331–345). New York, NY: Psychology Press.Google Scholar
  53. Zhang, J., & Norman, D. A. (1995). A representational analysis of numeration systems. Cognition, 57, 271–295.PubMedCrossRefGoogle Scholar
  54. Zhou, X., Chen, C., Chen, L., & Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task. Cognition, 106, 1525–1536.PubMedCrossRefGoogle Scholar
  55. Zorzi, M. & Butterworth, B. (1999). A computational model of number comparison. In: M. Shafto & P. Langley (Hrsg.), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (S.772–777). Mahwah, NJ: Erlbaum.Google Scholar
  56. Zorzi, M., Stoianov, I., & Umiltà, C. (2005). Computational modeling of numerical cognition. In J. I. D. Campbell (Hrsg.), Handbook of mathematical cognition (S. 67–83). New York: Psychology Press.Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • K. Moeller
    • 1
  • S. Huber
    • 2
  • H.-C. Nuerk
    • 1
    • 2
  • K. Willmes
    • 3
  1. 1.Institute of PsychologyEberhard Karls UniversityTuebingenGermany
  2. 2.Knowledge Media Research CenterTuebingenGermany
  3. 3.Section Neuropsychology, Department of NeurologyUniversity Hospital, RWTH Aachen UniversityAachenGermany

Personalised recommendations