Psychological Research

, Volume 75, Issue 4, pp 272–278 | Cite as

Bottom-up effects modulate saccadic latencies in well-known eye movement paradigm

  • Saskia van Stockum
  • Michael R. MacAskill
  • Tim J. Anderson
Original Article


A well-known eye movement paradigm combines saccades (fast eye movements) with a perceptual discrimination task. At a variable time after the onset of a central arrow cue indicating the target direction [the stimulus onset asynchrony (SOA)], discrimination symbols appear briefly at saccade target and non-target locations. A previous study revealed an unexpected effect of SOA on saccadic latencies: latencies were longer in trials with longer SOAs. It was suggested that this effect reflects a top-down process as observers may wait for the discrimination symbol to appear before executing saccades. However, symbol onsets may also modulate saccade latencies from the bottom-up. To clarify the origin of the SOA effect on latencies in this paradigm, we used a simplified version of the original task plus two new symbol onset conditions for comparison. The results indicate that the modulation of saccadic latencies was not due to a top-down strategy, but to a combination of two opposing bottom-up effects: the symbol onsets at the target location shortened saccade latencies, while symbol onsets at non-target locations lengthened saccade latencies.


Target Location Stimulus Onset Asynchrony Superior Colliculus Catch Trial Saccade Latency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by a FRST Doctoral Scholarship (SvS) and a New Zealand Lottery Grant.


  1. Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: Links, causes and implications for spatial attention. Trends in Cognitive Sciences, 10(3), 124–130.PubMedCrossRefGoogle Scholar
  2. Boehnke, S. E., & Munoz, D. P. (2008). On the importance of the transient visual response in the superior colliculus. Current Opinion in Neurobiology, 18(6), 544–551.PubMedCrossRefGoogle Scholar
  3. Bompas, A., & Sumner, P. (2009a). Oculomotor distraction by signals invisible to the retinotectal and magnocellular pathways. Journal of Neurophysiology, 102(4), 2387–2395.PubMedCrossRefGoogle Scholar
  4. Bompas, A., & Sumner, P. (2009b). Temporal dynamics of saccadic distraction. Journal of Vision, 9(9), 11–14.CrossRefGoogle Scholar
  5. Buonocore, A., & McIntosh, R. D. (2008). Saccadic inhibition underlies the remote distractor effect. Experimental Brain Research, 191(1), 117–122.CrossRefGoogle Scholar
  6. Deubel, H. (2008). The time course of presaccadic attention shifts. Psychological Research, 72(6), 630–640.PubMedCrossRefGoogle Scholar
  7. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.PubMedCrossRefGoogle Scholar
  8. Dorris, M. C., Olivier, E., & Munoz, D. P. (2007). Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming. Journal of Neuroscience, 27(19), 5053–5062.PubMedCrossRefGoogle Scholar
  9. Edelman, J. A., & Xu, K. Z. (2009). Inhibition of voluntary saccadic eye movement commands by abrupt visual onsets. Journal of Neurophysiology, 101(3), 1222–1234.PubMedCrossRefGoogle Scholar
  10. Everling, S., Pare, M., Dorris, M. C., & Munoz, D. P. (1998). Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: Implications for control of fixation and saccade behavior. Journal of Neurophysiology, 79(2), 511–528.PubMedGoogle Scholar
  11. Fecteau, J. H., Bell, A. H., & Munoz, D. P. (2004). Neural correlates of the automatic and goal-driven biases in orienting spatial attention. Journal of Neurophysiology, 92(3), 1728–1737.PubMedCrossRefGoogle Scholar
  12. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382–390.PubMedCrossRefGoogle Scholar
  13. Godijn, R., & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1039–1054.PubMedCrossRefGoogle Scholar
  14. Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.PubMedGoogle Scholar
  15. Irwin, D. E., Colcombe, A. M., Kramer, A. F., & Hahn, S. (2000). Attentional and oculomotor capture by onset, luminance and color singletons. Vision Research, 40(10–12), 1443–1458.PubMedCrossRefGoogle Scholar
  16. Isoda, M., & Hikosaka, O. (2008). A neural correlate of motivational conflict in the superior colliculus of the macaque. Journal of Neurophysiology, 100(3), 1332–1342.PubMedCrossRefGoogle Scholar
  17. Koelewijn, T., Bronkhorst, A., & Theeuwes, J. (2009). Auditory and visual capture during focused visual attention. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1303–1315.PubMedCrossRefGoogle Scholar
  18. Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897–1916.PubMedCrossRefGoogle Scholar
  19. Li, X., Kim, B., & Basso, M. A. (2006). Transient pauses in delay-period activity of superior colliculus neurons. Journal of Neurophysiology, 95(4), 2252–2264.PubMedCrossRefGoogle Scholar
  20. Ludwig, C. J., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 902–912.PubMedCrossRefGoogle Scholar
  21. Ludwig, C. J., Gilchrist, I. D., & McSorley, E. (2005). The remote distractor effect in saccade programming: Channel interactions and lateral inhibition. Vision Research, 45(9), 1177–1190.PubMedCrossRefGoogle Scholar
  22. McPeek, R. M. (2008). Reversal of a distractor effect on saccade target selection after superior colliculus inactivation. Journal of Neurophysiology, 99(5), 2694–2702.PubMedCrossRefGoogle Scholar
  23. Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7(14), 1–16.PubMedCrossRefGoogle Scholar
  24. Mulckhuyse, M., van Zoest, W., & Theeuwes, J. (2008). Capture of the eyes by relevant and irrelevant onsets. Experimental Brain Research, 186(2), 225–235.CrossRefGoogle Scholar
  25. Munoz, D. P., & Istvan, P. J. (1998). Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. Journal of Neurophysiology, 79(3), 1193–1209.PubMedGoogle Scholar
  26. Peirce, J. W. (2007). PsychoPy–Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13.PubMedCrossRefGoogle Scholar
  27. Peirce, J. W. (2008). Generating stimuli for neuroscience using PsychoPy. Frontiers in neuroinformatics, 2, 10.PubMedCrossRefGoogle Scholar
  28. Reingold, E. M., & Stampe, D. M. (2002). Saccadic inhibition in voluntary and reflexive saccades. Journal of Cognitive Neuroscience, 14(3), 371–388.PubMedCrossRefGoogle Scholar
  29. Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40.PubMedCrossRefGoogle Scholar
  30. Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256–271.PubMedCrossRefGoogle Scholar
  31. Walker, R., Deubel, H., Schneider, W. X., & Findlay, J. M. (1997). Effect of remote distractors on saccade programming: Evidence for an extended fixation zone. Journal of Neurophysiology, 78(2), 1108–1119.PubMedGoogle Scholar
  32. Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 2070–2089.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Saskia van Stockum
    • 1
    • 2
  • Michael R. MacAskill
    • 1
    • 2
  • Tim J. Anderson
    • 1
    • 2
    • 3
  1. 1.Van der Veer Institute for Parkinson’s and Brain ResearchChristchurchNew Zealand
  2. 2.Department of MedicineUniversity of OtagoChristchurchNew Zealand
  3. 3.Department of NeurologyChristchurch HospitalChristchurchNew Zealand

Personalised recommendations