Psychological Research PRPF

, Volume 73, Issue 4, pp 559–577 | Cite as

Thinking as the control of imagination: a conceptual framework for goal-directed systems

Original Article

Abstract

This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.

Keywords

Anticipation Control theory Goal Intention Internal modeling Simulation 

Notes

Acknowledgments

This work was supported by the European Community, project HUMANOBS: Humanoids That Learn Socio-Communicative Skills Through Observation (FP7-231453). The authors would like to thank Michael Arbib, Anna Borghi, and Elisabeth Pacherie for useful comments and criticisms.

References

  1. Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–149.PubMedGoogle Scholar
  2. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Natural Neuroscience, 11(9), 1109–1116.CrossRefGoogle Scholar
  3. Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.) Handbook of physiology—the nervous system II. Motor control (pp. 1449–1480). Bethesda: American Physiological Society.Google Scholar
  4. Arbib, M. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28, 105–121.PubMedGoogle Scholar
  5. Arbib, M., Bonaiuto, J., Jacobs, S., & Frey, S. (2009). Tool use and the distalization of the end-effector (this issue).Google Scholar
  6. Baddeley, A., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), The Psychology of Learning and Motivation (pp. 47–89). London: Academic.Google Scholar
  7. Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.PubMedCrossRefGoogle Scholar
  8. Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54, 462–479.CrossRefGoogle Scholar
  9. Barkley, R. A. (2001). The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychology Review, 11(1), 1–29.PubMedCrossRefGoogle Scholar
  10. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–600.PubMedGoogle Scholar
  11. Barsalou, L. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.PubMedCrossRefGoogle Scholar
  12. Berridge, K. (2004). Motivation concepts in behavioral neuroscience. Physiology and Behavior, 81(2), 179–209.PubMedCrossRefGoogle Scholar
  13. Berthoz, A. (2000). The brain’s sense of movement. Cambridge: Harvard University Press.Google Scholar
  14. Blakemore, S. J., Goodbody, S. J., & Wolpert, D. M. (1998). Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience, 18(18), 7511–7518.PubMedGoogle Scholar
  15. Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.PubMedCrossRefGoogle Scholar
  16. Brass, M., Bekkering, H., Wohlschlger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial and imitative cues. Brain and Cognition, 44, 124–143.PubMedCrossRefGoogle Scholar
  17. Bratman, M. (1987). Intentions, plans, and practical reason. Cambridge: Harvard University Press.Google Scholar
  18. Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev, 95, 49–90.PubMedCrossRefGoogle Scholar
  19. Burgess, N., & Hitch, G. (2005). Computational models of working memory: Putting long-term memory into context. Trends in Cognitive Sciences, 9, 535–541.PubMedCrossRefGoogle Scholar
  20. Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290–298.PubMedCrossRefGoogle Scholar
  21. Castelfranchi, C. (2000). Through the agents’ minds: Cognitive mediators of social action. Mind & Society, 1, 109–140.CrossRefGoogle Scholar
  22. Cisek, P. (2005). Neural representations of motor plans, desired trajectories, and controlled objects. Cognitive Processing, 6, 15–24.CrossRefGoogle Scholar
  23. Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical transactions of the Royal Society of London. Series B, 362, 1585–1599.PubMedCrossRefGoogle Scholar
  24. Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814.PubMedCrossRefGoogle Scholar
  25. Cotterill, R. (2001). Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: Possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64, 1–33.PubMedCrossRefGoogle Scholar
  26. Craighero, L., Fadiga, L., Rizzolatti, G., & Ulmita, C. (1999). Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance, 25, 1673–1692.PubMedCrossRefGoogle Scholar
  27. Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.Google Scholar
  28. Damasio, A. R. (1994). Descartes’ error: emotion, reason and the human brain. New York: Grosset/Putnam.Google Scholar
  29. Daw, N.D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRefGoogle Scholar
  30. Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079(1), 4–14.PubMedCrossRefGoogle Scholar
  31. Demiris, Y., & Khadhouri, B. (2005). Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal, 54, 361–369.CrossRefGoogle Scholar
  32. Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4, 423–431.PubMedCrossRefGoogle Scholar
  33. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.PubMedCrossRefGoogle Scholar
  34. Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A tms study. European Journal of Neuroscience, 15, 399–402.PubMedCrossRefGoogle Scholar
  35. Fagg, A., & Arbib, M. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11(7–8), 1277–1303.PubMedCrossRefGoogle Scholar
  36. Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action-related stimulus dimensions. Psychological Research, 71(1), 22–29.PubMedCrossRefGoogle Scholar
  37. Fiebach, C. J., & Schubotz, R. I. (2006). Dynamic anticipatory processing of hierarchical sequential events: A common role for broca’s area and ventral premotor cortex across domains? Cortex, 42(4):499–502.PubMedCrossRefGoogle Scholar
  38. Flanagan, J., & Johansson, R. (2003). Action plans used in action observation. Nature, 424, 769–771.PubMedCrossRefGoogle Scholar
  39. Fogassi, L., Ferrari, P., Chersi, F., Gesierich, B., Rozzi, S., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.PubMedCrossRefGoogle Scholar
  40. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.PubMedCrossRefGoogle Scholar
  41. Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355(1404), 1771–1788.PubMedCrossRefGoogle Scholar
  42. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.Google Scholar
  43. Gallese, V. (2001). The ’shared manifold’ hypothesis. From mirror neurons to empathy. Journal of Consciousness Studies, 8, 5–87.Google Scholar
  44. Gallese, V., & Metzinger, T. (2003). Motor ontology: The representational reality of goals, actions, selves. Philosophical Psychology, 13(3), 365–388.CrossRefGoogle Scholar
  45. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403.PubMedCrossRefGoogle Scholar
  46. Gardenfors, P. (2004). Emulators as sources of hidden cognitive variables. The Behavioral and Brain Sciences, 27(3), 403.CrossRefGoogle Scholar
  47. Gardenfors, P. (2007). Mind-reading as control theory. European Review, 15(2), 223–240.CrossRefGoogle Scholar
  48. Gibson, J. (1979). The ecological approach to visual perception. Mahwah: Lawrence Erlbaum Associates, Inc.Google Scholar
  49. Glenberg, A. (1997). What memory is for. Behavioral and Brain Sciences, 20, 1–55.PubMedGoogle Scholar
  50. Gollwitzer, P. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493–503.CrossRefGoogle Scholar
  51. Gregory, R. L. (1969). On how so little information controls so much behavior. In C. H. Waddington (Ed.), Towards a Theoretical Biology. 2, Sketches. Edinburgh: Edinburgh University Press.Google Scholar
  52. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, perception. Behavioral and Brain Sciences, 27(3), 377–96.PubMedGoogle Scholar
  53. Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.PubMedCrossRefGoogle Scholar
  54. Hamilton, A. F. d. C. & Grafton, S. T. (2007). The motor hierarchy: From kinematics to goals and intentions. In P. Haggard, Y. Rossetti, M. Kawato (Eds.), Sensorimotor foundations of higher cognition. NY: Oxford University Press.Google Scholar
  55. Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical mosaic for movement generation. In T. Ono, G. Matsumoto, R. Llinas, A. Berthoz, H. Norgren, R. Tamura (Eds.), Excepta medica international coungress series. Amsterdam: Elsevier.Google Scholar
  56. Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences, 6, 242–247.PubMedCrossRefGoogle Scholar
  57. Hoffmann, J., Stöcker, C., & Kunde, W. (2004). Anticipatory control of actions. International Journal of Sport and Exercise Psychology, 2, 346–361.Google Scholar
  58. Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus-response translation. In S. Monsell, J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes (pp. 247–273). Cambridge: MIT Press.Google Scholar
  59. Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Science, 24(5), 849–78.Google Scholar
  60. Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92(6), 427–437.PubMedCrossRefGoogle Scholar
  61. Hurley, S. (2008). The shared circuits model (scm): How control, mirroring, simulation can enable imitation, deliberation, mindreading. Behavioral and Brain Sciences, 31, 1–22.PubMedCrossRefGoogle Scholar
  62. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol, 3(3), e79.PubMedCrossRefGoogle Scholar
  63. Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16, 448–450.PubMedCrossRefGoogle Scholar
  64. Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9(1), 21–25.PubMedCrossRefGoogle Scholar
  65. James, W. (1890). The principles of psychology. New York: Dover Publications.Google Scholar
  66. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. The Behavioral and Brain Sciences, 17:187–245.CrossRefGoogle Scholar
  67. Jeannerod, M. (1997). The cognitive neuroscience of action (pp. 173–174). Oxford: Blackwell.Google Scholar
  68. Jeannerod, M. (1999). To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology, 52A(1), 1–29.CrossRefGoogle Scholar
  69. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, S103–S109.PubMedCrossRefGoogle Scholar
  70. Jeannerod, M. (2006). Motor cognition. NY: Oxford University Press.Google Scholar
  71. Jordan, J. S. (2003). Emergence of self and other in perception and action. Consciousness and Cognition, 12, 633–646.PubMedCrossRefGoogle Scholar
  72. Jordan, M. I., & Rumelhart, D. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRefGoogle Scholar
  73. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.PubMedCrossRefGoogle Scholar
  74. Kilner, J., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.PubMedCrossRefGoogle Scholar
  75. Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends Cogn Sci, 11(6), 229–235.PubMedCrossRefGoogle Scholar
  76. Konidaris, G., & Barto, A. (2007). Building portable options: Skill transfer in reinforcement learning. In Proceedings of the twentieth international joint conference on artificial intelligence (IJCAI-07).Google Scholar
  77. Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2), 72–79.PubMedCrossRefGoogle Scholar
  78. Land, M. F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25, 296–324.PubMedCrossRefGoogle Scholar
  79. Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379, 649–652.PubMedCrossRefGoogle Scholar
  80. McClure, S., Laibson, D., Loewenstein, G., & Cohen, J. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 304, 503–507.CrossRefGoogle Scholar
  81. McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel competition in decision making. Psychological Science, 19(1), 22–24.PubMedCrossRefGoogle Scholar
  82. Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–53.PubMedGoogle Scholar
  83. Miall, R. C. (2003). Connecting mirror neurons and forward models. Neuroreport, 14(17), 2135–2137.PubMedCrossRefGoogle Scholar
  84. Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.PubMedCrossRefGoogle Scholar
  85. Miceli, M., & Castelfranchi, C. (2002). Modelling motivational representations. Cognitive Science Quarterly, 2, 233–247.Google Scholar
  86. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, clinical studies. Brain Cognition, 42(2), 183–200.CrossRefGoogle Scholar
  87. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  88. Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston.CrossRefGoogle Scholar
  89. Moller, R., & Schenck, W. (2008). Bootstrapping cognition from behavior—a computerized thought experiment. Cognitive Science, 32(3), 504–542.Google Scholar
  90. Nishimoto, R., & Tani, J. (2009). Development process of functional hierarchy for actions and motor imagery: A constructivist view from synthetic neuro-robotics study (this issue).Google Scholar
  91. Niv, Y., Joel, D., & Dayan, P. (2006). A normative perspective on motivation. Trends in Cognitive Science, 8, 375–381.CrossRefGoogle Scholar
  92. Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Cognitive Brain Research, 22, 129–151.PubMedCrossRefGoogle Scholar
  93. Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Network, 19(3), 254–271.CrossRefGoogle Scholar
  94. Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107, 179–217.PubMedCrossRefGoogle Scholar
  95. Pezzulo, G. (2008a). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18(2), 179–225.CrossRefGoogle Scholar
  96. Pezzulo, G. (2008b). A study of off-line uses of anticipation. In M. Asada, J. Tani, J. Hallam, J.-A. Meyer (Eds.), Proceedings of SAB 2008. LNAI, vol 5040 (pp. 372–382). Berlin: Springer.Google Scholar
  97. Pezzulo, G., & Castelfranchi, C. (2007). The symbol detachment problem. Cognitive Processing, 8(2), 115–131.PubMedCrossRefGoogle Scholar
  98. Pham, L. B., & Taylor, S. E. (1999). From thought to action: Effects of process- versus outcome-based mental simulations on performance. Personality and Social Psychology Bulletin, 25, 250–260.CrossRefGoogle Scholar
  99. Piaget, J. (1954). The construction of reality in the child. Ballentine.Google Scholar
  100. Powers, W. T. (1973). Behavior: The control of perception. Hawthorne, NY: Aldine.Google Scholar
  101. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
  102. Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445(7130), 919–921.PubMedCrossRefGoogle Scholar
  103. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRefGoogle Scholar
  104. Rick, S., & Loewenstein, G. (2008). Intangibility in intertemporal choice. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1511), 3813–3824.PubMedCrossRefGoogle Scholar
  105. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.PubMedCrossRefGoogle Scholar
  106. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  107. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. ii. area f5 and the control of distal movements. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 71(3), 491–507.PubMedGoogle Scholar
  108. Rizzolatti, G., Riggio, L., & Sheliga, B. (1994). Space and selective attention. In C. Umilta, M. Moscovitch (Eds.) Attention and performance XV (pp. 231–265). Cambridge, Mass: MIT Press.Google Scholar
  109. Rochat, P. (2007). Intentional action arises from early reciprocal exchanges. Acta Psychologica, 124(1), 8–25.PubMedCrossRefGoogle Scholar
  110. Rolls, E. T. (1999). The brain and emotion. New York: Oxford University Press.Google Scholar
  111. Rosenbaum, D. (1991). Human motor control. New York: Academic Press.Google Scholar
  112. Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001a). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453–70.PubMedCrossRefGoogle Scholar
  113. Rosenbaum, D. A., Meulenbroek, R. J., & Vaughan, J. (2001b). Planning reaching and grasping movements: Theoretical premises and practical implications. Motor Control, 2, 99–115.Google Scholar
  114. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 18–24.CrossRefGoogle Scholar
  115. Scheier, M. F., & Carver, C. S. (2003). Self-regulatory processes and responses to health threats: Effects of optimism on well-being. In J. Suls, K. Wallston (Eds.), Social psychological foundations of health (pp. 395–428). Oxford: Blackwell.Google Scholar
  116. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.CrossRefGoogle Scholar
  117. Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211–218.PubMedCrossRefGoogle Scholar
  118. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMedGoogle Scholar
  119. Stelmach, G., & Diggles, V. (1982). Control theories in motor behavior. Acta Psychologica, 50, 83–105.CrossRefGoogle Scholar
  120. Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel and is it unique to humans? Behavioral and Brain Sciences, 30(3), 299–313.PubMedGoogle Scholar
  121. Synofzik, M., Thier, P., & Lindner, A. (2006). Movements depends on an adaptable prediction about the sensory action outcome. J Neurophysiology, 96, 1592–1601.CrossRefGoogle Scholar
  122. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F., & Perani, D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17(2), 273–281.PubMedCrossRefGoogle Scholar
  123. Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185–203.PubMedCrossRefGoogle Scholar
  124. Umiltà, M., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., Jezzini, A., Gallese, V., & Rizzolatti, G. (2008). How pliers become fingers in the monkey motor system. Proceedings of the National Academy of Science, 105, 2209–2213.CrossRefGoogle Scholar
  125. von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: L. Voss.Google Scholar
  126. von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Science, 8(6), 266–272.CrossRefGoogle Scholar
  127. von Holst, E., & Mittelstaedt, H. (1950). Das reafferenzprinzip. Naturwissenschaften, 37:464–476.CrossRefGoogle Scholar
  128. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.PubMedCrossRefGoogle Scholar
  129. Wohlschlager, A., Engbert, K., & Haggard, P. (2003a). Intentionality as a constituting condition for the own self-and other selves. Consciousness and Cognition, 12(4), 708–716.PubMedCrossRefGoogle Scholar
  130. Wohlschlager, A., Gattis, M., & Bekkering, H. (2003b). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society of London, 358, 501–515.PubMedCrossRefGoogle Scholar
  131. Wolpert, D. M., & Ghahramani, Z. (2004). Computational motor control. Science, 269, 1880–1882.CrossRefGoogle Scholar
  132. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.PubMedCrossRefGoogle Scholar
  133. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci, 358(1431), 593–602.PubMedCrossRefGoogle Scholar
  134. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273–293.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Istituto di Linguistica Computazionale “Antonio Zampolli”, CNRPisaItaly
  2. 2.Istituto di Scienze e Tecnologie della Cognizione, CNRRomeItaly

Personalised recommendations