Advertisement

Psychological Research

, Volume 73, Issue 2, pp 186–197 | Cite as

Dimension- and space-based intertrial effects in visual pop-out search: modulation by task demands for focal-attentional processing

  • Joseph KrummenacherEmail author
  • Hermann J. Müller
  • Michael Zehetleitner
  • Thomas Geyer
Original Article

Abstract

Two experiments compared reaction times (RTs) in visual search for singleton feature targets defined, variably across trials, in either the color or the orientation dimension. Experiment 1 required observers to simply discern target presence versus absence (simple-detection task); Experiment 2 required them to respond to a detection-irrelevant form attribute of the target (compound-search task). Experiment 1 revealed a marked dimensional intertrial effect of 34 ms for an target defined in a changed versus a repeated dimension, and an intertrial target distance effect, with an 4-ms increase in RTs (per unit of distance) as the separation of the current relative to the preceding target increased. Conversely, in Experiment 2, the dimension change effect was markedly reduced (11 ms), while the intertrial target distance effect was markedly increased (11 ms per unit of distance). The results suggest that dimension change/repetition effects are modulated by the amount of attentional focusing required by the task, with space-based attention altering the integration of dimension-specific feature contrast signals at the level of the overall-saliency map.

Keywords

Search Display Change Trial Dimension Repetition Singleton Feature Compound Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present study was supported by Swiss National Science Foundation (SNSF) grant PP001-110543/1 (J. Krummenacher) and German National Science Foundation (DFG) grant FOR480 (J. Krummenacher, H. J. Müller, and T. Geyer).

References

  1. Bundesen, C. (1991). Visual selection of features and objects: Is location special? A reinterpretation of Nissen’s (1985) findings. Perception and Psychophysics, 50, 87–89.PubMedGoogle Scholar
  2. Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive Psychology, 22, 225–271.PubMedCrossRefGoogle Scholar
  3. Chan, L. K. H., & Hayward, W. G. (2008). Feature integration theory revisited: Dissociating feature detection and attentional guidance in visual search. Journal of Experimental Psychology: Human Perception & Performance (in press).Google Scholar
  4. Cohen, A., & Magen, H. (1999). Intra- and cross-dimensional visual search for single feature targets. Perception and Psychophysics, 61, 291–307.PubMedGoogle Scholar
  5. Egly, R., & Homa, D. (1991). Reallocation of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 17, 142–159.PubMedCrossRefGoogle Scholar
  6. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.PubMedCrossRefGoogle Scholar
  7. Folk, C. L., Remington, R. W., & Johnston, I. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.PubMedCrossRefGoogle Scholar
  8. Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception and Psychophysics, 58, 88–101.PubMedGoogle Scholar
  9. Geyer, T., & Müller, H. J. (2008a). Distinct, but top–down modulable color and positional priming mechanisms in visual pop-out search. Psychological Research (this issue).Google Scholar
  10. Geyer, T., & Müller, H. J. (2008b). Positional priming of pop-out: A relational-encoding account. Journal of Experimental Psychology: Human Perception & Performance (submitted).Google Scholar
  11. Geyer, T., Müller, H. J., & Krummenacher, J. (2007). Cross-trial priming of element positions in pop-out visual search is dependent on regular stimulus arrangement. Journal of Experimental Psychology: Human Perception and Performance, 33, 788–797.PubMedCrossRefGoogle Scholar
  12. Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5, 183–216.Google Scholar
  13. Hopf, J. M., Boelmans, K., Schoenfeld, A. M., Heinze, H. J., & Luck, S. J. (2002). How does attention attenuate target–distractor interference in vision? Evidence from magnetoencephalographic recordings. Cognitive Brain Research, 15, 17–29.PubMedCrossRefGoogle Scholar
  14. Kingstone, A. (1992). Combining expectancies. Quarterly Journal Experimental Psychology, 44A, 69–104.Google Scholar
  15. Krummenacher, J., Müller, H. J., & Heller, D. (2002a). Visual search for dimensionally redundant pop-out targets: Parallel-coactive processing of dimensions is location-specific. Journal of Experimental Psychology: Human Perception and Performance, 28, 1303–1322.PubMedCrossRefGoogle Scholar
  16. Krummenacher, J., Müller, H. J., & Heller, D. (2002b). Visual search for dimensionally redundant pop-out targets: Redundancy gains in compound tasks. Visual Cognition, 9, 801–837.CrossRefGoogle Scholar
  17. Maljkovic, V., & Nakayama, K. (1996). Priming of popout: II. Role of position. Perception and Psychophysics, 58, 977–991.PubMedGoogle Scholar
  18. Mortier, K., Theeuwes, J., & Starreveld, P. (2005). Response selection modulates visual search within and across dimensions. Journal of Experimental Psychology: Human Perception and Performance, 31, 542–557.PubMedCrossRefGoogle Scholar
  19. Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception and Psychophysics, 57, 1–17.PubMedGoogle Scholar
  20. Müller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting: Pre-attentive or post-selective? Visual Cognition, 14, 490–513.CrossRefGoogle Scholar
  21. Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035.PubMedCrossRefGoogle Scholar
  22. Nissen, M. J. (1985). Accessing features and objects: Is location special? In M. I. Posner & O. S. M. Marin (Eds.), Attention and Performance XI (pp. 205–219). Hillsdale: Erlbaum.Google Scholar
  23. Pollmann, S., Weidner, R., Müller, H. J., & von Cramon, D. Y. (2000). A fronto-posterior network involved in visual dimension changes. Journal of Cognitive Neuroscience, 12, 480–494.PubMedCrossRefGoogle Scholar
  24. Pollmann, S., Weidner, R., Müller, H. J., & von Cramon, D. Y. (2006). Neural correlates of visual dimension weighting. Visual Cognition, 14, 877–897.CrossRefGoogle Scholar
  25. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40.PubMedCrossRefGoogle Scholar
  26. Theeuwes, J., Reimann, B., & Mortier, K. (2006). Visual search for featural singletons: No top–down modulation, only bottom-up priming. Visual Cognition, 14, 466–489.CrossRefGoogle Scholar
  27. Töllner, T., Gramann, K., Müller, H. J., Kiss, M., & Eimer, M. (2008). Electrophysiological markers of visual dimension changes and response changes. Journal of Experimental Psychology: Human Perception and Performance, 34, 531–542.PubMedCrossRefGoogle Scholar
  28. Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lectures. Quarterly Journal of Experimental Psychology, 40A, 201–237.Google Scholar
  29. Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRefGoogle Scholar
  30. Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478.PubMedCrossRefGoogle Scholar
  31. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238.Google Scholar
  32. Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433.PubMedCrossRefGoogle Scholar
  33. Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869.PubMedCrossRefGoogle Scholar
  34. Zehetleitner, M., & Müller, H. J. (2008). A mathematical model of the dimension weighting account. Ludwig Maximilian University Munich (unpublished manuscript). Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joseph Krummenacher
    • 1
    Email author
  • Hermann J. Müller
    • 2
    • 3
  • Michael Zehetleitner
    • 2
  • Thomas Geyer
    • 2
  1. 1.Department of PsychologyUniversity of FribourgFribourgSwitzerland
  2. 2.General and Experimental PsychologyLudwig Maximilian University MunichMunichGermany
  3. 3.Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations