Advertisement

Psychological Research

, 73:136 | Cite as

Microsaccadic modulation of response times in spatial attention tasks

  • Reinhold Kliegl
  • Martin Rolfs
  • Jochen Laubrock
  • Ralf Engbert
Original Article

Abstract

Covert shifts of attention are usually reflected in RT differences between responses to valid and invalid cues in the Posner spatial attention task. Such inferences about covert shifts of attention do not control for microsaccades in the cue-target interval. We analyzed the effects of microsaccade orientation on RTs in four conditions, crossing peripheral visual and auditory cues with peripheral visual and auditory discrimination targets. Reaction time was generally faster on trials without microsaccades in the cue-target interval. If microsaccades occurred, the target-location congruency of the last microsaccade in the cue-target interval interacted in a complex way with cue validity. For valid visual cues, irrespective of whether the discrimination target was visual or auditory, target-congruent microsaccades delayed RT. For invalid cues, target-incongruent microsaccades facilitated RTs for visual target discrimination but delayed RT for auditory target discrimination. No reliable effects on RT were associated with auditory cues or with the first microsaccade in the cue-target interval. We discuss theoretical implications on the relation about spatial attention and oculomotor processes.

Keywords

Visual Target Spatial Attention Auditory Target Covert Shift Spatial Attention Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by Deutsche Forschungsgemeinschaft (grants KL-955/3 and KL/955-6). Data and R-scripts are available upon request. We thank Erich Schröger and a reviewer for helpful comments.

References

  1. Baayen, R. H. (2008). Practical data analysis for the language sciences with R. Cambridge: Cambridge University Press.Google Scholar
  2. Barlow, H. B. (1952). Eye movements during fixation. Journal of Physiology, 116, 290–306.PubMedGoogle Scholar
  3. Bates, D. (2008). lme4: Linear mixed-effect models using S4 classes. R package version 0.999375–1 [Software]. Vienna: R Foundation for Statistical Computing.Google Scholar
  4. Betta, E., Galfano, G., & Turatto, M. (2007). Microsaccadic response during inhibition of return in a target-target paradigm. Vision Research, 47, 428–436.PubMedCrossRefGoogle Scholar
  5. Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. Neuroreport, 17, 1001–1004.PubMedCrossRefGoogle Scholar
  6. Clowes, M. B. (1962). A note on colour discrimination under conditions of retinal image constraint. Optica Acta, 9, 65–68.Google Scholar
  7. Deubel, H., & Elsner, T. (1986). Threshold perception and saccadic eye movements. Biological Cybernetics, 54, 351–358.PubMedCrossRefGoogle Scholar
  8. Ditchburn, R. W. (1955). Eye-movements in relation to retinal action. Optica Acta, 1, 171–176.Google Scholar
  9. Ditchburn, R. W. (1980). The function of small saccades. Vision Research, 20, 271–272.PubMedCrossRefGoogle Scholar
  10. Ditchburn, R. W., & Ginsborg, B. L. (1953). Involuntary eye movements during fixation. Journal of Physiology, 119, 1–17.PubMedGoogle Scholar
  11. Donner, K., & Hemilä, S. (2007). Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research, 47, 1166–1177.PubMedCrossRefGoogle Scholar
  12. Elsner, T., & Deubel, H. (1986). The effect of saccades on threshold perception—A model study. Biological Cybernetics, 54, 359–366.PubMedCrossRefGoogle Scholar
  13. Engbert, R. (2006). Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research, 154, 177–192.PubMedCrossRefGoogle Scholar
  14. Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035–1045.PubMedCrossRefGoogle Scholar
  15. Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences of the United States of America, 103, 7192–7197.CrossRefGoogle Scholar
  16. Galfano, G., Betta, E., & Turatto, M. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159, 400–404.CrossRefGoogle Scholar
  17. Gerrits, H. J. M., & Vendrik, A. J. H. (1974). The influence of stimulus movements on perception in parafoveal stabilized vision. Vision Research, 14, 175–180.PubMedCrossRefGoogle Scholar
  18. Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42, 2533–2545.PubMedCrossRefGoogle Scholar
  19. Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S., & Wolfe, J. M. (2007a). Fixational eye movements are not an index of covert attention. Psychological Science, 18, 356–363.PubMedCrossRefGoogle Scholar
  20. Horowitz, T. S., Fencsik, D. E., Fine, E. M., Yurgenson, S., & Wolfe, J. M. (2007b). Microsaccades and attention: Does a weak correlation make an index? Reply to Laubrock, Engbert, Rolfs, & Kliegl (2007). Psychological Science, 18, 367–368.CrossRefGoogle Scholar
  21. Kliegl, R. (2007). Towards a perceptual-span theory of distributed processing in reading: A reply to Rayner, Pollatsek, Drieghe, Slattery, & Reichle (2007). Journal of Experimental Psychology. General, 138, 530–537.CrossRefGoogle Scholar
  22. Kliegl, R., Risse, S., & Laubrock, J. (2007). Preview benefit and parafoveal-on-foveal effects from word n + 2. Journal of Experimental Psychology: Human Perception and Performance, 33, 1250–1255.PubMedCrossRefGoogle Scholar
  23. Krummenacher, J., Müller, H.J., & Geyer, T. (2008). RT performance in visual search is affected by dimension- and space-based intertribal contingencies. Psychological Research.Google Scholar
  24. Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45, 721–730.PubMedCrossRefGoogle Scholar
  25. Laubrock, J., Engbert, R., & Kliegl, R. (2008). Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision, 8(14), 1–17.PubMedCrossRefGoogle Scholar
  26. Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R. (2007). Microsaccades are an index of covert attention. Commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychological Science, 18, 364–366.PubMedCrossRefGoogle Scholar
  27. Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297–305.PubMedCrossRefGoogle Scholar
  28. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.PubMedCrossRefGoogle Scholar
  29. Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-Plus. New York: Springer.Google Scholar
  30. Posner, M. I. (1980). Orientation of attention. The VIIth Sir Frederic Bartlett lecture. Quarterly Journal of Experimental Psychology, 32A, 3–25.Google Scholar
  31. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and Performance, X (pp. 531–556). Hillsdale: Erlbaum.Google Scholar
  32. Posner, M. I., Davidson, B. J., & Snyder, C. R. R. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.CrossRefGoogle Scholar
  33. Quené, H., & van den Bergh, H. (2004). On multi-level modeling of data from repeated measures designs: A tutorial. Speech Communication, 43, 103–121.CrossRefGoogle Scholar
  34. R Development Core Team (2007). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  35. Ratliff, F., & Riggs, L. A. (1950). Involuntary motions of the eye during monocular fixation. Journal of Experimental Psychology, 40, 687–701.PubMedCrossRefGoogle Scholar
  36. Rattle, J. D., & Foley-Fisher, J. A. (1968). A relationship between vernier acuity and intersaccadic interval. Optica Acta, 15, 617–620.PubMedGoogle Scholar
  37. Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite a peripheral cue. Psychological Science, 15, 705–707.PubMedCrossRefGoogle Scholar
  38. Rolfs, M., Engbert, R., & Kliegl, R. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166, 427–439.CrossRefGoogle Scholar
  39. Rolfs, M., Kliegl, R., & Engbert, R. (2008). Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision, 8(11), 1–23.PubMedCrossRefGoogle Scholar
  40. Rolfs, M., Laubrock, J., & Kliegl, R. (2008). Microsaccade-induced prolongation of saccadic latencies depends on microsaccade amplitude. Journal of Eye Movement Research, 1(3), 1–8.Google Scholar
  41. Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research, 169, 369–376.CrossRefGoogle Scholar
  42. Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2002). Fixational eye movements are not affected by abrupt onsets that capture attention. Vision Research, 42, 1663–1669.PubMedCrossRefGoogle Scholar
  43. Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2003). Attentional enhancement opposite a peripheral flash revealed using change blindness. Psychological Science, 14, 91–99.PubMedCrossRefGoogle Scholar
  44. Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2004). The distribution of microsaccade directions need not reveal the location of attention. Psychological Science, 15, 708–710.CrossRefGoogle Scholar
  45. Wickham, H. (2007a). Reshaping data with the reshape package. Journal of Statistical Software, 21,1–19. [Software] R package version 0.8.0.Google Scholar
  46. Wickham, H. (2007b). ggplot2: An implementation of the grammar of graphics. [Software] R package version 0.5.7. http://had.co.nz/ggplot2/.
  47. Zuber, B. L., & Stark, L. (1966). Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology, 16, 65–79.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Reinhold Kliegl
    • 1
    • 2
  • Martin Rolfs
    • 1
  • Jochen Laubrock
    • 1
  • Ralf Engbert
    • 1
  1. 1.University of PotsdamPotsdamGermany
  2. 2.Department of PsychologyUniversity of PotsdamPotsdamGermany

Personalised recommendations