Psychological Research PRPF

, Volume 73, Issue 6, pp 835–842 | Cite as

Anticipation of cognitive demand during decision-making

Original Article


An abundance of evidence indicates that action selection is guided, at least in certain contexts, by anticipation of action outcomes. In one particularly clear demonstration of this principle, Bechara and colleagues, studying a gambling task, observed phasic skin conductance responses just prior to actions associated with a relatively high risk of monetary loss (Bechara et al. in J Neurosci 19:5473–5481, 1999; Bechara et al. in Science 275:1293–1295, 1997; Bechara et al. in Cereb Cortex 6:215–225, 1996). In the present work, we tested for the same effect in a paradigm where choices resulted not in differential monetary outcomes, but in differential requirements for subsequent mental effort. In two experiments, we observed an anticipatory skin conductance response prior to actions resulting in a high level of cognitive demand. This finding indicates that requirements for effortful cognitive control are anticipated during action selection. We argue, based on convergent evidence, that such anticipation may not only trigger preparation; it may also play a direct role in effort-based decision-making.


  1. Allport, G. W. (1954). The Nature of Prejudice. New York: Addison Wesley.Google Scholar
  2. Andreassi, J. L. (2000). Psychophysiology: Human behavior and physiological response. New Jersey: Lawrence Erlbaum Associates.Google Scholar
  3. Balle, M. (2002). La loi du moindre effort mental: Les representations mentales. Sciences Humaines, 128, 36–39.Google Scholar
  4. Baroody, A. J., & Ginsburg, H. P. (1986). The relationship between initial meaningful and mechanical knowledge of arithmetic. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 75–112). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  5. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.PubMedGoogle Scholar
  6. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.PubMedCrossRefGoogle Scholar
  7. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.PubMedCrossRefGoogle Scholar
  8. Botvinick, M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective and Behavioral Neuroscience, 7, 356–366.CrossRefGoogle Scholar
  9. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.PubMedCrossRefGoogle Scholar
  10. Botvinick, M., & Rosen, Z. (2007). Is mental effort aversive? Some behavioral and psychophysiological evidence. Paper presented at the Cognitive Neuroscience Society Annual Meeting.Google Scholar
  11. Botvinick, M., Rosen, Z., & McGuire, J. C. (2008). Action selection based on anticipated cognitive demand: A test of “the law of least mental effort” (submitted).Google Scholar
  12. Brown, J. W., & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective and Behavioral Neuroscience, 7, 266–277.CrossRefGoogle Scholar
  13. Buchel, C., Morris, J., Dolan, R. J., & Friston, K. J. (1998). Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron, 20, 947–957.PubMedCrossRefGoogle Scholar
  14. Camerer, C. F., & Hogarth, R. M. (1999). The effects of financial incentives in experiments: A review and capital-labor-production framework. Journal of Risk and Uncertainty, 19, 7–42.CrossRefGoogle Scholar
  15. Carter, C. S., & Van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective and Behavioral Neuroscience, 7, 367–379.CrossRefGoogle Scholar
  16. Christenfeld, N. (1995). Choices from identical options. Psychological Science, 6, 50–55.CrossRefGoogle Scholar
  17. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions: Biological Sciences, 351, 1413–1420.CrossRefGoogle Scholar
  18. Fowles, D. C. (1980). The three arousal model: Implications of Gray’s two-factor learning theory for heart rate, electrodermal activity and psychopathy. Psychophysiology, 17, 87–104.PubMedCrossRefGoogle Scholar
  19. Fowles, D. C. (1988). Psychophysiology and psychopathology: A motivational approach. Psychophysiology, 25, 373–391.PubMedCrossRefGoogle Scholar
  20. Fredrikson, M., Furmark, T., Olsson, T., Fischer, H., Andersson, J., & Langstrom, B. (1998). Functional neuroanatomical correlates of electrodermal activity: A positron emission tomographic study. Psychophysiology, 35, 179–185.PubMedCrossRefGoogle Scholar
  21. Gendolla, G. H., & Richter, M. (2005). Ego involvement and effort: Cardiovascular, electrodermal, and performance effects. Psychphysiology, 42, 595–603.CrossRefGoogle Scholar
  22. Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century.Google Scholar
  23. Johansen, J. P., & Fields, H. L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neuroscience, 7, 398–403.PubMedCrossRefGoogle Scholar
  24. Kim, H., Shimojo, S., & O’Doherty, J. (2006). Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. PLOS Biology, 4, 1453–1461.Google Scholar
  25. Koyama, T., Tanaka, Y., & Mikami, A. (1998). Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport, 9, 2663–2667.PubMedCrossRefGoogle Scholar
  26. Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin and Review, 1, 476–490.Google Scholar
  27. Mathias, C. J., Josephs, O., O’Doherty, J., Zanini, S., Dewar, B. K., Cipolatti, L., et al. (2003). Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain, 125, 2139–2152.Google Scholar
  28. McGuire, W. J. (1969). The nature of attitudes and attitude change. In G. Lindzey & E. Aronson (Eds.), The handbook of social psychology (Vol. 3, pp. 136–314). Reading: Addision-Wesley.Google Scholar
  29. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.PubMedCrossRefGoogle Scholar
  30. Naccache, L., Dehaene, S., Cohen, L., Habert, M. O., Guichart-Gomez, E., Galanaude, D., et al. (2005). Effortless control: Executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43(9), 1318–1328.PubMedCrossRefGoogle Scholar
  31. Nagai, Y., Critchley, H. D., Featherstone, E., Trimble, M. R., & Dolan, R. J. (2004). Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: Physiological account of a “default mode” of brain function. NeuroImage, 22.Google Scholar
  32. Pecchinenda, A., & Smith, C. A. (1996). The affective significance of skin conductance activity during a difficult problem-solving task. Cognition and Emotion, 10, 481–503.CrossRefGoogle Scholar
  33. Rosch, E. (1999). Principles of categorization. In E. Margolis & S. Laurence (Eds.), Concepts: Core readings. Cambridge: MIT Press.Google Scholar
  34. Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. S. (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 9, 1161–1168.PubMedCrossRefGoogle Scholar
  35. Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8, 410–417.PubMedCrossRefGoogle Scholar
  36. Solomon, R. L. (1948). The influence of work on behavior. Psychological Bulletin, 45, 1–40.PubMedCrossRefGoogle Scholar
  37. Tranel, D., & Damasio, H. (1994). Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology, 31, 427–438.PubMedCrossRefGoogle Scholar
  38. Walton, M. E., Kennerley, S. W., Bannerman, D. M., Phillips, P. E. M., & Rushworth, M. F. (2006). Weighing up the benefits of work: Behavioral and neural analyses of effort-related decision making. Neural Networks, 19, 1302–1314.PubMedCrossRefGoogle Scholar
  39. Wright, R. A. (1996). Brehm’s theory of motivation asa model of effort and cardiovascular response. In P. M. Gollwitzer & J. A. Bargh (Eds.), The Psychology of Action (pp. 424–453). New York: Guilford Press.Google Scholar
  40. Wright, R. A., & Brehm, J. W. (1989). Energization and goal attractiveness. In L. Pervin (Ed.), Goal concepts in personality and social psychology (pp. 169–210). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  41. Wright, R. A., & Kirby, L. D. (2001). Effort determination of cardiovascular response: An integrative analysis with applications in social psychology. In M. P. Zanna (Ed.), Advances in experimental social psychology (pp. 255–307). San Diego: Academic Press, Inc.Google Scholar
  42. Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Addison-Wesley Press.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Psychology, Princeton Neuroscience InstitutePrinceton UniversityPrincetonUSA
  2. 2.Department of PsychologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations