Psychological Research PRPF

, Volume 73, Issue 3, pp 308–316 | Cite as

Dissociating speed and accuracy in absolute identification: the effect of unequal stimulus spacing

  • Christopher DonkinEmail author
  • Scott D. Brown
  • Andrew Heathcote
  • A. A. J. Marley
Original Article


Identification accuracy for sets of perceptually discriminable stimuli ordered on a single dimension (e.g., line length) is remarkably low, indicating a fundamental limit on information processing capacity. This surprising limit has naturally led to a focus on measuring and modeling choice probability in absolute identification research. We show that choice response time (RT) results can enrich our understanding of absolute identification by investigating dissociation between RT and accuracy as a function of stimulus spacing. The dissociation is predicted by the SAMBA model of absolute identification (Brown, Marley, Dockin, & Heathcote, 2008), but cannot easily be accommodated by other theories. We show that SAMBA provides an accurate, parameter free, account of the dissociation that emerges from the architecture of the model and the physical attributes of the stimuli, rather than through numerical adjustment. This violation of the pervasive monotonic relationship between RT and accuracy has implications for model development, which are discussed.


Response Time Magnitude Estimate Tuning Curve Choice Probability Response Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashby, F. G. (2000). A stochastic version of general recognition theory. Journal of Mathematical Psychology, 44, 310–329.PubMedCrossRefGoogle Scholar
  2. Ashby, F. G., & Lee, W. W. (1991). Predicting similarity and categorization from identification. Journal of Experimental Psychology: General, 120, 150–172.CrossRefGoogle Scholar
  3. Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112(1), 117–128.PubMedCrossRefGoogle Scholar
  4. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice reaction time: linear ballistic accumulation. Cognitive Psychology. Google Scholar
  5. Brown, S., Marley, A. A. J., Donkin, C., & Heathcote, A. (2008). An integrated architecture for absolute identification. Psychological Review, 115, 396–425.PubMedCrossRefGoogle Scholar
  6. Donkin, C., Dodds, P., Brown, S. D., & Heathcote, A. (2008). Revisiting the Limits of Human Information Processing Capacity. (submitted).Google Scholar
  7. Duyck, W., Lagrou, E., Gevers, W., & Fias, W. (2008). Roman digit naming: evidence for a semantic route. Experimental Psychology, 55, 73–81.PubMedGoogle Scholar
  8. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to stroop interference. Journal of Experimental Psychology, 132, 47–70.PubMedGoogle Scholar
  9. Karpiuk, P., Jr., Lacouture, Y., & Marley, A. A. J. (1997). A limited capacity, wave equality, random walk model of absolute identification. In A. A. J. Marley (Ed.), Choice, decision and measurement: essays in honour of R. Duncan Luce (pp. 279–299). Mahwah: Erlbaum.Google Scholar
  10. Kent, C., & Lamberts, L. (2005). An exemplar account of the bow and set size effects in absolute identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 289–305.PubMedCrossRefGoogle Scholar
  11. Lacouture, Y. (1997). Bow, range, and sequential effects in absolute identification: a response-time analysis. Psychological Research, 60, 121–133.PubMedCrossRefGoogle Scholar
  12. Lacouture, Y., & Marley, A. A. J. (1995). A mapping model of bow effects in absolute identification. Journal of Mathematical Psychology, 39, 383–395.CrossRefGoogle Scholar
  13. Lacouture, Y., & Marley, A. A. J. (2004). Choice and response time processes in the identification and categorization of unidimensional stimuli. Perception & Psychophysics, 66, 1206–1226.Google Scholar
  14. Lamberts, K. (2000). Information-accumulation theory of speeded categorization. Psychological Review, 107, 227–260.PubMedCrossRefGoogle Scholar
  15. Lockhead, G. R. (2004). Absolute judgments are relative: a reinterpretation of some psychophysical ideas. Review of General Psychology, 8, 265–272.CrossRefGoogle Scholar
  16. Lockhead, G. R., & Hinson, J. (1986). Range and sequence effects in judgment. Perception & Psychophysics, 40, 53–61.Google Scholar
  17. Luce, R. D., Nosofsky, R. M., Green, D. M., & Smith, A. F. (1982). The bow and sequential effects in absolute identification. Perception & Psychophysics, 32, 397–408.Google Scholar
  18. Marley, A. A. J., & Cook, V. T. (1984). A fixed rehearsal capacity interpretation of limits on absolute identification performance. British Journal of Mathematical and Statistical Psychology, 37, 136–151.Google Scholar
  19. Marley, A. A. J., & Cook, V. T. (1986). A limited capacity rehearsal model for psychological judgments applied to magnitude estimation. Journal of Mathematical Psychology, 30, 339–390.CrossRefGoogle Scholar
  20. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for information processing. Psychological Review, 63, 81–97.PubMedCrossRefGoogle Scholar
  21. Nosofsky, R. M. (1997). An exemplar-based random-walk model of speeded categorization and absolute judgment. In A. A. J. Marley (Ed.), Choice, decision and measurement: essays in honor of R. Duncan Luce (pp. 347–365). Mahwah: Erlbaum.Google Scholar
  22. Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded categorization. Psychological Review, 104, 266–300.PubMedCrossRefGoogle Scholar
  23. Petrov, A. A., & Anderson, J. R. (2005). The dynamics of scaling: a memory-based anchor model of category rating and absolute identification. Psychological Review, 112, 383–416.PubMedCrossRefGoogle Scholar
  24. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  25. Roeflofs, A. (2006). Functional architecture of naming dice, digits, and number words. Language and Cognitive Processes, 21, 78–111.CrossRefGoogle Scholar
  26. Rouder, J. N., Morey, R. D., Cowan, N., & Pfaltz, M. (2004). Learning in a unidimensional absolute identification task. Psychonomic Bulletin & Review, 11, 938–944.Google Scholar
  27. Stewart, N., Brown, G. D. A., & Chater, N. (2005). Absolute identification by relative judgment. Psychological Review, 112, 881–911.PubMedCrossRefGoogle Scholar
  28. Wuehr, P., & Frings, C. (2008). A Case for Inhibition: visual attention suppresses the processing of irrelevant objects. Journal of Experimental Psychology: General, 137, 116–130.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christopher Donkin
    • 1
    Email author
  • Scott D. Brown
    • 1
  • Andrew Heathcote
    • 1
  • A. A. J. Marley
    • 2
  1. 1.School of PsychologyUniversity of NewcastleNewcastleAustralia
  2. 2.University of VictoriaVictoriaCanada

Personalised recommendations