Psychological Research PRPF

, Volume 73, Issue 3, pp 336–349 | Cite as

The effects of dividing attention on the encoding and performance of novel naturalistic actions

  • David A. GoldEmail author
  • Norman W. Park
Original Article


Novel naturalistic actions (NNAs) are multi-step, goal-directed actions involving the manipulation of objects that are unfamiliar to a person prior to instruction. Experiment 1 investigated the cognitive processes involved with encoding and performing NNAs by selectively interfering with attention during viewing or production of a NNA using the dual-task paradigm (n = 27, healthy adults). Consistent with the central findings from the dual-task memory literature, dividing attention at viewing caused a relatively greater disruptive effect on NNA performance than selectively interfering with attention during enactment. A follow-up experiment (n = 24, healthy adults) increased difficulty of memory retrieval by having participants verbally describe previously viewed NNAs while concurrently performing a secondary task, and it revealed no significant differences between the effects of dividing attention on the verbal description and physical construction of NNAs. The implications of our findings for the processes mediating encoding and enactment of naturalistic actions were presented. As well, the utility of a dynamic technique of inducing error types normally found in neurologically impaired populations was discussed.


Secondary Task Attention Condition Divided Attention Accomplishment Score Full Attention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
  2. Baddeley, A. D., Lewis, V., Eldridge, M., & Thomson, N. (1984). Attention and retrieval from long-term memory. Journal of Experimental Psychology: General, 113, 518–540.CrossRefGoogle Scholar
  3. Bekkering, H., Brass, M., Woschina, S., & Jacobs, A. M. (2005). Goal-directed imitation in patients with ideomotor apraxia. Cognitive Neuropsychology, 22, 419–432.CrossRefGoogle Scholar
  4. Botvinick, M., & Plaut, D. C. (2004). Doing without schema hierarchies: A recurrent connectionist approach to normal and impaired routine sequential action. Psychological Review, 111, 395–429.PubMedCrossRefGoogle Scholar
  5. Butterworth, G. (1990). On reconceptualizing sensori-motor coordination in dynamic system terms. In H. Bloch, & B. I. Bertenthal (Eds.), Sensory motor organization and development in infancy and early childhood (pp. 57–73). The Netherlands: Kluwer.Google Scholar
  6. Buxbaum, L. J., Kyle, K. M., & Menon, R. (2005). On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled objects-related actions in humans. Cognitive Brain Research, 25, 226–239.PubMedCrossRefGoogle Scholar
  7. Buxbaum, L. J., Schwartz, M. F., & Montgomery, M. W. (1998). Ideational apraxia and naturalistic action. Cognitive Neuropsychology, 15, 617–643.CrossRefGoogle Scholar
  8. Cooper, R. P., Schwartz, M. F., Yule, P., & Shallice, T. (2005). The simulation of action disorganization in complex activities of daily living. Cognitive Neuropsychology, 22, 959–1004.CrossRefGoogle Scholar
  9. Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125, 159–180.CrossRefGoogle Scholar
  10. Craik, F. I. M, Naveh-Benjamin, M., Ishaik, G., & Anderson, N. D. (2000). Divided attention during encoding and retrieval: Differential control effects? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1744–1749.PubMedCrossRefGoogle Scholar
  11. Creem, S. H., & Proffitt, D. R. (2001). Grasping objects by their handles: A necessary interaction between cognition and action. Journal of Experimental Psychology: Human Perception and Performance, 27, 218–228.PubMedCrossRefGoogle Scholar
  12. Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions: Influence of action content and subject’s strategy. Brain, 120, 1763–1777.PubMedCrossRefGoogle Scholar
  13. De Renzi, E., & Lucchelli, F. (1988). Ideational apraxia. Brain, 111, 1173–1185.PubMedCrossRefGoogle Scholar
  14. Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and Aging, 4, 500–503.PubMedCrossRefGoogle Scholar
  15. Engelkamp, J. (1998). Memory for actions. Hove: Psychology Press.Google Scholar
  16. Fernandes, M. A., & Moscovitch, M. (2000). Divided attention and memory: Evidence of substantial interference effects at retrieval and encoding. Journal of Experimental Psychology: General, 129, 155–176.CrossRefGoogle Scholar
  17. Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613–619.CrossRefGoogle Scholar
  18. Giovannetti, T., Libon, D. J., Buxbaum, L. J., & Schwartz, M. F. (2002). Naturalistic action impairments in dementia. Neuropsychologia, 40, 1220–1232.PubMedCrossRefGoogle Scholar
  19. Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C.-H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.PubMedCrossRefGoogle Scholar
  20. Hartmann, K., Goldenberg, G., Daumuller, M., & Hermsdorfer, J. (2005). It takes the whole brain to make a cup of coffee: The neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43, 625–637.PubMedCrossRefGoogle Scholar
  21. Humphreys, G. W., & Forde, E. M. E. (1998). Disordered action schema and action disorganisation syndrome. Cognitive Neuropsychology, 15, 771–811.Google Scholar
  22. Iacoboni, M., Woods, R. P., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human interaction. Science, 286, 2526–2528.PubMedCrossRefGoogle Scholar
  23. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.PubMedCrossRefGoogle Scholar
  24. Lindemann, O., Stenneken, P., van Schie, H. T., & Bekkering, H. (2006). Semantic activation in action planning. Journal of Experimental Psychology: Human Perception and Performance, 32, 633–643.PubMedCrossRefGoogle Scholar
  25. Luria, A. R. (1966). Higher cortical functions in man. London: Tavistock.Google Scholar
  26. Moscovitch, M. (1992). Memory and working with memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4, 257–267.CrossRefGoogle Scholar
  27. Moscovitch, M. (1994). Interference at retrieval from long-term memory: The influences of frontal and temporal lobes. Neuropsychology, 4, 525–534.Google Scholar
  28. Naveh-Benjamin, M., Craik, F. I. M., Guez, J., & Dori, H. (1998). Effects of divided attention on encoding and retrieval processes in human memory: Further support for an asymmetry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1091–1104.PubMedCrossRefGoogle Scholar
  29. Naveh-Benjamin, M., Craik, F. I. M., Guez, J., & Kreuger, S. (2005). Divided attention in younger and older adults: Effects of strategy and relatedness on memory performance and secondary task costs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 520–537.PubMedCrossRefGoogle Scholar
  30. Naveh-Benjamin, M., Kilb, A., & Fisher, T. (2006). Concurrent task effects on memory encoding and retrieval: Further support for an asymmetry. Memory and Cognition, 34, 90–101.Google Scholar
  31. Newtson, D. (1973). Attribution and the unit of perception of ongoing behavior. Journal of Personality and Social Psychology, 28, 28–38.CrossRefGoogle Scholar
  32. Nyberg, L., Petersson, K. M., Nilsson, L-G., Sandblom, J., Aberg, C., & Ingvar, M. (2001). Reactivation of motor brain area during explicit memory for actions. Neuroimage, 14, 521–528.PubMedCrossRefGoogle Scholar
  33. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
  34. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.CrossRefGoogle Scholar
  35. Rohrer, D., & Pashler, H. E. (2003). Concurrent task effects on memory retrieval. Psychonomic Bulletin & Review, 10, 96–103.Google Scholar
  36. Rumiati, R. I., & Bekkering, H. (2003). To imitate or not to imitate: How the brain can do it, that is the question. Brain and Cognition, 53, 479–482.PubMedCrossRefGoogle Scholar
  37. Rumiati, R. I., & Tessari, A. (2002). Imitation of novel and well-known actions. Experimental Brain Research, 142, 425–433.CrossRefGoogle Scholar
  38. Rusted, J., & Sheppard, L. (2002). Action-based memory in Alzheimer’s Disease: A longitudinal look at tea making. Neurocase, 8, 111–126.PubMedGoogle Scholar
  39. Schacter, D. L., & Tulving, E. (1994). What are the memory systems of 1994? In: D. L. Schacter, & E. Tulving (Eds.), Memory systems 1994 (pp. 1–35). Cambridge: MIT Press.Google Scholar
  40. Schneider, W., Eschman, A., & Zuccolotta, A. (2002). E-prime user’s guide. Pittsburgh: Psychology Software Tools.Google Scholar
  41. Schwartz, M. F. (2006). The cognitive neuropsychology of everyday action and planning. Cognitive Neuropsychology, 23, 202–221.CrossRefGoogle Scholar
  42. Schwartz, M. F., Buxbaum, L. J., Montgomery, M. W., Fitzpatrick-DeSalme, E., Hart, T., Ferraro, M., et al. (1999). Naturalistic action production following right hemisphere stroke. Neuropsychologia, 37, 51–56.PubMedCrossRefGoogle Scholar
  43. Schwartz, M. F., Montgomery, M. W., Buxbaum, L. J., Less, S. S., Carew, T. G., Coslett, H. B., et al. (1998). Naturalistic action impairment in closed head injury. Neuropsychologia, 12, 13–28.CrossRefGoogle Scholar
  44. Schwartz, M. F., Reed, E. S., Montgomery, M. W., Palmer, C., & Mayer, N. H. (1991). The qualitative description of action disorganization after brain damage: A case study. Cognitive Neuropsychology, 8, 381–414.CrossRefGoogle Scholar
  45. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428.PubMedCrossRefGoogle Scholar
  46. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  47. Troyer, A. K., & Craik, F. I. M. (2000). The effect of divided attention on memory for items and their context. Canadian Journal of Experimental Psychology, 54, 161–170.PubMedGoogle Scholar
  48. Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130, 29–58.CrossRefGoogle Scholar
  49. Zalla, T., Plassiart, C., Pillon, B., Grafman, J., & Sirigu, A. (2001). Action planning in a virtual context after prefrontal cortex damage. Neuropsychologia, 39, 759–770.PubMedCrossRefGoogle Scholar
  50. Zalla, T., Pradat-Diehl, P., & Sirigu, A. (2003). Perception of action boundaries in patients with frontal lobe damage. Neuropsychologia, 41, 1619–27.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PsychologyYork UniversityTorontoCanada

Personalised recommendations