Advertisement

Psychological Research

, Volume 72, Issue 5, pp 473–500 | Cite as

Control by action representation and input selection (CARIS): a theoretical framework for task switching

  • Nachshon Meiran
  • Yoav Kessler
  • Esther Adi-Japha
Original Article

Abstract

Control by action representation and input selection (CARIS) is a modeling framework for task-switching experiments, which considers action-related effects as critical constraints. It assumes that control operates by choosing control parameter values, representing input selection and action representation. Competing CARIS models differ in whether (a) control parameters are determined by current instructions or represent a perseveration, (b) current instructions apply to the input selection and/or to action representation. According to the chosen model (a) task execution results in a default bias in favor of the executed task thus creating perseverative tendencies; (b) control counteracts these tendencies by applying a transient momentary bias whose locus (input selection or action representation) changes as a function of task preparation time; (c) this happens because the task-cue (e.g., SHAPE) initially attracts attention to the immediately available cue-information (e.g., target shape) and then attracts it to inferred or retrieved information (e.g., “circle” is related to the right key press).

Keywords

Switch Cost Action Representation Congruency Effect Incongruent Trial Task Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research was supported by a grant to the first author from the Israel Science Foundation. We thank Thomas Goschke, Thomas Kleinsorge, Erik Altmann, Iring Koch and an anonymous reviewer for their insightful and challenging comments, and Rotem Eren-Rabinovich for English proofreading.

References

  1. Ach, N. (2006). On volition (T. Herz, Trans.). (Original work published 1910) Retrieved from University of Konstanz, Cognitive Psychology Web site: http://www.uni-konstanz.de/kogpsych/ach.htm.
  2. Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In: C. Umiltà, & M. Moscovitch (Eds.), Attention and Performance XV: Conscious and Unconscious Processing (pp. 421–452). Cambridge, MA: MIT Press.Google Scholar
  3. Allport, A., & Wylie, G. (2000). ‘Task-switching’, stimulus-response bindings and negative priming. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 35–70). Cambridge, MA: MIT Press.Google Scholar
  4. Altmann, E. M. (2006). Task switching is not cue switching. Psychonomic Bulletin & Review, 13, 1016–1022.Google Scholar
  5. Altmann, E. M. (2007). Comparing switch costs: Alternating runs and explicit cuing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 475–483.PubMedCrossRefGoogle Scholar
  6. Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The functional relationship of decay and interference. Psychological Science, 13, 27–33.PubMedCrossRefGoogle Scholar
  7. Arrington, C. M., Logan, G. D., & Schneider, D. W. (2007). Separating cue encoding from target processing in the explicit task cuing procedure. Are there “true” task switch effects? Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 484–502.CrossRefGoogle Scholar
  8. Badre, D., & Wagner, A. D. (2006). Computational and neurobiological mechanisms underlying cognitive flexibility. PNAS, 103, 7186–7191.PubMedCrossRefGoogle Scholar
  9. Brass, M., Ruge, H., Meiran, N., Rubin, O., Koch, I, Zysset, S., Prinz, W., & von Cramon, D. Y. (2003). When the same response has different meaning: Recoding the response meaning in the lateral prefrontal cortex. NeuroImage, 20, 1026–1031.PubMedCrossRefGoogle Scholar
  10. Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726.PubMedCrossRefGoogle Scholar
  11. Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A computational model of fractionated conflict-control mechanisms in task switching. Cognitive Psychology, 55, 37–85.PubMedCrossRefGoogle Scholar
  12. Campbell, K. C., & Proctor, R. W. (1993). Repetition effects with categorizable stimulus and response sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1345–1362.CrossRefGoogle Scholar
  13. De Jong, R. (1995). Strategical determinants of compatibility effects with task uncertainty. Acta Psychologica, 88, 187–207.CrossRefGoogle Scholar
  14. De Jong, R. (2000). An intention-activation account of residual switch costs. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 357–376). Cambridge, MA: MIT Press.Google Scholar
  15. De Pisapia, N, & Braver, T. S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69, 1322–1326.CrossRefGoogle Scholar
  16. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedCrossRefGoogle Scholar
  17. Diamond, A. (1985). Development of the ability use to recall to guide action, as indicated by infant’s performance on AB. Child Development, 56, 868–883.PubMedCrossRefGoogle Scholar
  18. Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets during task switching? Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 1221–1233.CrossRefGoogle Scholar
  19. Fagot, C. (1994). Chronometric investigations of task switching. Unpublished PhD Thesis, University of California, San Diego.Google Scholar
  20. Fey, E. T. (1951). The performance of young schizophrenics and young normals on the Wisconsin Card Sorting Test. Journal of Consulting Psychology, 15, 311–319.PubMedCrossRefGoogle Scholar
  21. Gade, M., & Koch, I. (2007a). Cue-task associations in task switching. The Quarterly Journal of Experimental Psychology, 60, 762–769.PubMedCrossRefGoogle Scholar
  22. Gade, M., & Koch, I. (2007b). The influence of overlapping response sets on task inhibition. Memory & Cognition, 35, 603–609.Google Scholar
  23. Gilbert, S. J., & Shallice, T. (2002). Task switching: A PDP model. Cognitive Psychology, 44, 297–337.PubMedCrossRefGoogle Scholar
  24. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task-set switching. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 331–355). Cambridge, MA: MIT Press.Google Scholar
  25. Hackley, S. A., & Valle-Inclan, F. (1998). Automatic alerting does not speed late motoric processes in a reaction-time task. Nature, 391, 786–788.PubMedCrossRefGoogle Scholar
  26. Hackley, S. A., & Valle-Inclan, F. (1999). Accessory stimulus effects on response selection: Does arousal speed decision making? Journal of Cognitive Neuroscience, 11, 321–329.PubMedCrossRefGoogle Scholar
  27. Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411–428.CrossRefGoogle Scholar
  28. Hoffmann, J., Kiesel, A., & Sebald, A. (2003). Task switches under go/nogo conditions and the decomposition of switch costs. European Journal of Cognitive Psychology, 15, 101–128.CrossRefGoogle Scholar
  29. Hommel, B. (1993). Inverting the Simon effect by intention: Determinants of direction and extent of effects of irrelevant spatial information. Psychological Research, 55, 270–279.CrossRefGoogle Scholar
  30. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.PubMedCrossRefGoogle Scholar
  31. Hübner, R., & Druey, M. (2006). Response execution, selection, or activation: What is sufficient for response-related repetition effects under task shifting? Psychological Research, 70, 245–261.PubMedCrossRefGoogle Scholar
  32. Kleinsorge, T. (1999). Response repetition benefits and costs. Acta Psychologica, 103, 295–310.PubMedCrossRefGoogle Scholar
  33. Kleinsorge, T., & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62, 300–312.CrossRefGoogle Scholar
  34. Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12, 107–112.Google Scholar
  35. Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory & Cognition, 34, 433-444.Google Scholar
  36. Koch, I., & Philipp, A. M. (2005). Effects of response selection on the task-repetition benefit in task switching. Memory & Cognition, 33, 624–634.Google Scholar
  37. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.PubMedCrossRefGoogle Scholar
  38. Loehlin, J. C. (1987). Latent variable models: An introduction to factor, path, and structural analysis. Hillsdale, NJ: Erlbaum.Google Scholar
  39. Logan, G. D., & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance, 29, 575–599.PubMedCrossRefGoogle Scholar
  40. Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434.PubMedCrossRefGoogle Scholar
  41. Lorch, R. F., & Myers, J. L. (1990). Regression analysis of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149–157.PubMedCrossRefGoogle Scholar
  42. Los, S. A. (1996). On the origin of mixing costs: Exploring information processing in pure and mixed blocks of trials. Acta Psychologica, 94, 145–188.CrossRefGoogle Scholar
  43. Luria, R., & Meiran, N. (2003). Online order control in the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 556–574.PubMedCrossRefGoogle Scholar
  44. Luria, R., & Meiran, N. (2006). Dual route for subtask order control: Evidence from the Psychological Refractory Period paradigm. Quarterly Journal of Experimental Psychology: Section A, 59, 720–744.Google Scholar
  45. Mayr, U. (2001). Age differences in the selection of mental sets: The role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16, 96–109.PubMedCrossRefGoogle Scholar
  46. Mayr, U., & Bryck, R. L. (2005). Sticky rules: integration between abstract rules and specific actions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 337–350.PubMedCrossRefGoogle Scholar
  47. Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26.CrossRefGoogle Scholar
  48. Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory and Cognition, 26, 1124–1140.CrossRefGoogle Scholar
  49. Mayr, U., & Kliegl, R. (2003). Differential effects of cue changes and task changes on task-set selection costs. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 362–372.CrossRefGoogle Scholar
  50. Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 1423–1442.CrossRefGoogle Scholar
  51. Meiran, N. (2000a). Modeling cognitive control in task-switching. Psychological Research, 63, 234–249.PubMedCrossRefGoogle Scholar
  52. Meiran, N. (2000b). The reconfiguration of the stimulus task-set and the response task set during task switching. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 377–400). Cambridge, MA: MIT Press.Google Scholar
  53. Meiran, N. (2005). Task rule congruency and Simon-like effects in switching between spatial tasks. Quarterly Journal of Experimental Psychology: Section A, 58A, 1023–1041.Google Scholar
  54. Meiran, N. (2008a). Task switching: Mechanisms underlying rigid vs. flexible self control. In: R. Hassin, K. Ochsner, & Y. Trope (Eds.) Social Cognition and Social Neuroscience, NY: Oxford University Press (in press).Google Scholar
  55. Meiran, N. (2008b). The dual implication of dual affordance: Stimulus-task binding and attentional focus changing during task preparation. Experimental Psychology. doi: 10.1027/1618-3169.55.4.252.
  56. Meiran, N., & Chorev, Z. (2005). Phasic alertness and the residual task-switch cost. Experimental Psychology, 52, 109–124.PubMedGoogle Scholar
  57. Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253.PubMedCrossRefGoogle Scholar
  58. Meiran, N., & Daichman, A. (2005). Advance task preparation reduces task error rate in the cueing task-switching paradigm. Memory and Cognition, 33, 1272–1288.Google Scholar
  59. Meiran, N., Gotler, A., & Perlman, A. (2001). Old age is associated with a pattern of relatively intact and relatively impaired task-set switching abilities. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 56B, 88–102.Google Scholar
  60. Meiran, N. & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.PubMedCrossRefGoogle Scholar
  61. Meiran, N., Levine, J., Meiran, N., & Henik, A. (2000). Task set switching in schizophrenia. Neuropsychology, 14, 471–482.PubMedCrossRefGoogle Scholar
  62. Meiran, N., & Marciano, H. (2002). Limitations in advance task preparation: Switching the relevant stimulus dimension in speeded same-different comparisons. Memory & Cognition, 30, 540–550.Google Scholar
  63. Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40, 25–40.CrossRefGoogle Scholar
  64. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  65. Milner, B. (1964). Some effects of frontal lobectomy in man. In: J. M. Warren, & K. Akert (Eds.), The Frontal Granular Cortex and Behavior (pp. 313–334). New York: McGraw-Hill.Google Scholar
  66. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140.PubMedCrossRefGoogle Scholar
  67. Monsell, S., & Mizon, G. A. (2006). Can the task cuing paradigm measure an “endogenous” task set reconfiguration process? Journal of Experimental Psychology: Human Perception and Performance, 32, 493–516.PubMedCrossRefGoogle Scholar
  68. Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Memory and Cognition, 31, 327–342.Google Scholar
  69. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In: R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.) Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.Google Scholar
  70. Pashler, H. (1991). Shifting visual attention and selecting motor responses: Distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17, 1023–1040.PubMedCrossRefGoogle Scholar
  71. Pashler, H., & Baylis, G. (1991). Procedural learning: 2. Intertrial repetition effects in speeded-choice tasks. Journal of Experimental Psychology: Learning, Memory and Cognition, 17, 33–48.CrossRefGoogle Scholar
  72. Philipp, A. M., Jolicœur, P., Falkenstein, M., & Koch, I. (2007). Response selection and response execution in task switching: Evidence from a go-signal paradigm. Journal of Experimental Psychology: Learning, Memory and Cognition, 33, 1062–1075.CrossRefGoogle Scholar
  73. Philipp, A. M., & Koch, I. (2005). Switching of response modalities. Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 58A, 1325–1338.Google Scholar
  74. Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.Google Scholar
  75. Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter space partitioning. Psychological Review, 113, 57–83.PubMedCrossRefGoogle Scholar
  76. Quinlan, P. T., & Hill, N. I. (1999). Sequential effects in rudimentary auditory and visual tasks. Perception & Psychophysics, 61, 375–384.Google Scholar
  77. Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318–339.CrossRefGoogle Scholar
  78. Rogers, R. D., & Monsell, S. (1995). The cost of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.CrossRefGoogle Scholar
  79. Rubin, O., & Meiran, N. (2005). On the origins of the task mixing cost in the cuing task switching paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 1477–1491.PubMedCrossRefGoogle Scholar
  80. Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763–797.PubMedCrossRefGoogle Scholar
  81. Ruge, H., Brass, M., Koch, I., Rubin, O., Meiran, N., & von Cramon, D. Y., (2005). Advance preparation and stimulus induced interference in cued task switching: Further insights from BOLD fMRI. Neuropsychologia, 43, 340–355.PubMedCrossRefGoogle Scholar
  82. Ruthruff, E., Remington, R. W., & Johnston, J. C. (2001). Switching between simple cognitive tasks: The interaction of top-down and bottom-up factors. Journal of Experimental Psychology: Human Perception and Performance, 27, 1404–1419.PubMedCrossRefGoogle Scholar
  83. Schneider, D. W., & Logan, G. D. (2005). Modeling task switching without switching tasks: A short-term memory priming account of explicitly cued performance. Journal of Experimental Psychology: General, 134, 343–367.CrossRefGoogle Scholar
  84. Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105.PubMedCrossRefGoogle Scholar
  85. Schuch, S., & Koch, I. (2004). The cost of changing the representation of action. Journal of Experimental Psychology: Human Perception and Performance, 30, 566–582.PubMedCrossRefGoogle Scholar
  86. Shalev, L., & Algom, D. (2000). Stroop and Garner effects in and out of Posner’s beam: Reconciling two conceptions of selective attention. Journal of Experimental Psychology: Human Perception and Performance, 26, 997–1017.PubMedCrossRefGoogle Scholar
  87. Sohn, M. H., & Anderson, J. R. (2001). Task preparation and task repetition: Two-component model of task switching. Journal of Experimental Psychology: General, 130, 764–778.CrossRefGoogle Scholar
  88. Sosna, G. (2001). Practice and transfer in task-switching: The effect of quantity and frequency of switching. Unpublished MA Thesis, Ben-Gurion University of the Negev, Beer-Sheva.Google Scholar
  89. Steinhauser, M., & Hübner, R. (2006). Response-based strengthening in task-shifting: Evidence from shift effects produced by errors. Journal of Experimental Psychology: Human Perception and Performance, 32, 517–534.PubMedCrossRefGoogle Scholar
  90. Sudevan, P., & Taylor, D.A. (1987). The cueing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89–103.PubMedCrossRefGoogle Scholar
  91. Treisman, A.M. (1969). Strategies and models of selective attention. Psychological Review, 76, 282–299.PubMedCrossRefGoogle Scholar
  92. Verbruggen, F., Liefooghe, B., Szmalec, A., & Vandierendonck, A. (2005). Inhibiting responses when switching: Does it matter? Experimental Psychology, 52, 125–130.PubMedGoogle Scholar
  93. Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2006). Selective stopping in task switching: The role of response selection and response execution. Experimental Psychology, 53, 48–57.PubMedGoogle Scholar
  94. Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal of Experimental Psychology: Human Perception and Performance, 8, 562–581.PubMedCrossRefGoogle Scholar
  95. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stumulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413.PubMedCrossRefGoogle Scholar
  96. Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50, 233–238.PubMedGoogle Scholar
  97. Yehene, E., & Meiran, N. (2007). Is there a general task switching ability? Acta Psychologica, 126, 169–195.PubMedCrossRefGoogle Scholar
  98. Yehene, E., Meiran, N., & Soroker, N. (2005). Task alternation cost without task alternation: Measuring intentionality. Neuropsychologia, 43, 1858–1869.PubMedCrossRefGoogle Scholar
  99. Yehene, E. & Meiran, N., & Soroker, N. (2008). Basal ganglia play a unique role in task switching within the frontal-sub-cortical circuits: Evidence from patients with focal lesions. Journal of Cognitive Neuroscience. doi: 10.1162/jocn.2008.20077.
  100. Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 455–469.PubMedCrossRefGoogle Scholar
  101. Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29, 919–936.PubMedCrossRefGoogle Scholar
  102. Yeung, N., Nystrom, L. E., Aronson, J. A., & Cohen, J. D. (2006). Between-task competition and cognitive control in task switching. The Journal of Neuroscience, 26, 1429 –1438.PubMedCrossRefGoogle Scholar
  103. Zelazo, P. D., & Frye, D. (1997). Cognitive complexity and control: A theory of the development of deliberate reasoning and intentional action. In: M. Stamenov (Ed.), Language structure, discourse, and the access to consciousness (pp. 113–153). Amsterdam & Philadelphia: John Benjamins.Google Scholar
  104. Zhao, J-H. (2005). A probabilistic mechanics approach to die cracking prediction in flip-chip ball grid array package. IEEE Transactions on Components and Packaging, 28, 390–396.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nachshon Meiran
    • 1
  • Yoav Kessler
    • 1
  • Esther Adi-Japha
    • 2
  1. 1.Department of PsychologyZlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Department of EducationThe Gonda Center for Brain Research, Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations