Psychological Research

, Volume 72, Issue 5, pp 567–579 | Cite as

The dynamic-stimulus advantage of visual symmetry perception

  • Ryosuke Niimi
  • Katsumi Watanabe
  • Kazuhiko YokosawaEmail author
Original Article


It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2–4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.


Pattern Frequency Rapid Serial Visual Presentation Successive Presentation Individual Pattern Symmetric Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by Grants-in-Aid for Scientific Research, the Japan Society for the Promotion of Science (awarded to R. N. and K. Y., respectively), and by Shimojo Implicit Brain Function Project, ERATO, Japan Science and Technology Agency (to K. W.).


  1. Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving gratings. Nature, 300, 523–525.PubMedCrossRefGoogle Scholar
  2. Alais, D., van der Smagt, M. J., van den Berg, A. V., & van de Grind, W. A. (1998). Local and global factors affecting the coherent motion of gratings presented in multiple apertures. Vision Research, 38, 1581–1591.PubMedCrossRefGoogle Scholar
  3. Barlow, H. B., & Reeves, B. C. (1979). The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19, 783–793.PubMedCrossRefGoogle Scholar
  4. Bartley, S. H. (1938). Subjective brightness in relation to flash rate and the light-dark ration. Journal of Experimental Psychology, 23, 313–319.CrossRefGoogle Scholar
  5. Brooks, A., van der Zwan, R., & Holden, J. (2003). An illusion of coherent global motion arising from single brief presentations of stationary stimulus. Vision Research, 43, 2387–2392.PubMedCrossRefGoogle Scholar
  6. Burr, D., & Ross, J. (2006). The effects of opposite-polarity dipoles on the detection of Glass patterns. Vision Research, 46, 1139–1144.PubMedCrossRefGoogle Scholar
  7. Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics, 27, 183–228.Google Scholar
  8. Glass, L. (1969). Moiré effect from random dots. Nature, 223, 578–580.PubMedCrossRefGoogle Scholar
  9. Glass, L., & Pérez, R. (1973). Perception of random dot interference patterns. Nature, 246, 360–362.PubMedCrossRefGoogle Scholar
  10. Hogben, J. H., & DiLollo, V. (1974). Perceptual integration and perceptual segregation of brief visual stimuli. Vision Research, 14, 1059–1069.PubMedCrossRefGoogle Scholar
  11. Hogben, J. H., Julesz, B., & Ross, J. (1976). Short-term memory for symmetry. Vision Research, 16, 861–866.PubMedCrossRefGoogle Scholar
  12. Huang, L., & Pashler, H. (2002). Symmetry detection and visual attention: A “binary-map” hypothesis. Vision Research, 42, 1421–1430.PubMedCrossRefGoogle Scholar
  13. Jenkins, B. (1982). Redundancy in the perception of bilateral symmetry in dot textures. Perception & Psychophysics, 32, 171–177.Google Scholar
  14. Jenkins, B. (1983). Component processes in the detection of bilaterally symmetric dot textures. Perception & Psychophysics, 34, 433–440.Google Scholar
  15. Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.Google Scholar
  16. Julesz, B. (1981). Figure and ground perception in briefly presented isodipole textures. In M. Kubovy, & J. Pomenrantz (Eds.), Perceptual organization (pp. 27–54). Hillsdale: Erlbaum.Google Scholar
  17. Kanwisher, N. (1987). Repetition blindness: Type recognition without token individuation. Cognition, 27, 117–143.PubMedCrossRefGoogle Scholar
  18. Kanwisher, N. (2003). The ventral visual object pathway in humans: Evidence from fMRI. In L. M. Chalupa, & J. S. Werner (Eds.), The visual neurosciences (pp. 1179–1189). Cambridge: The MIT Press.Google Scholar
  19. Katz, M. S. (1964). Brief flash brightness. Vision Research, 4, 361–373.PubMedCrossRefGoogle Scholar
  20. Maki, W. S., Frigen, K., & Paulson, K. (1997). Associative priming by targets and distractors during rapid serial visual presentation: Does word meaning survive the attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 23, 1014–1034.PubMedCrossRefGoogle Scholar
  21. Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the USA, 92, 8135–8139.PubMedCrossRefGoogle Scholar
  22. Morris, A. L., & Harris, C. L. (2004). Repetition blindness: Out of sight or out of mind? Journal of Experimental Psychology: Human Perception and Performance, 30, 913–922.PubMedCrossRefGoogle Scholar
  23. Niimi, R., Watanabe, K., & Yokosawa, K. (2005). The role of visible persistence for perception of visual bilateral symmetry. Japanese Psychological Research, 47, 262–270.CrossRefGoogle Scholar
  24. Olivers, C. N. L., Chater, N., & Watson, D. G. (2004). Holography does not account for goodness: A clitique of van der Helm and Leeuwenverg (1996). Psychological Review, 111, 242–260.PubMedCrossRefGoogle Scholar
  25. Or, C. C.-F., Khuu, S. K., & Hayes, A. (2007). The role of luminance contrast in the detection of global structure in static and dynamic, same- and opposite-polarity, Glass patterns. Vision Research, 47, 253–259.PubMedCrossRefGoogle Scholar
  26. Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetry. Journal of Experimental Psychology: Human Perception and Performance, 4, 691–702.PubMedCrossRefGoogle Scholar
  27. Rainville, S. J. M., & Kingdom, F. A. A. (2002). Scale invariance is driven by stimulus density. Vision Research, 42, 351–367.PubMedCrossRefGoogle Scholar
  28. Ross, J., Badcock, D. R., & Hayes, A. (2000). Coherent global motion in the absence of coherent velocity signals. Current Biology, 10, 679–682.PubMedCrossRefGoogle Scholar
  29. Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences of the USA, 102, 3159–3163.PubMedCrossRefGoogle Scholar
  30. Tyler, C. W. (Ed.). (1996). Human symmetry perception and its computational analysis. Utrecht: VSP.Google Scholar
  31. Tyler, C. W. (1999). Human symmetry detection exhibits reverse eccentricity scaling. Visual Neuroscience, 16, 919–922.PubMedCrossRefGoogle Scholar
  32. Tyler, C. W. (2001). The symmetry magnification function varies with detection task. Journal of Vision, 1, 137–144.PubMedCrossRefGoogle Scholar
  33. Tyler, C. W., Baseler, H. A., Kontsevich, L. L., Likova, L. T., Wade, A. R., & Wandell, B. A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage, 24, 306–314.PubMedCrossRefGoogle Scholar
  34. Tyler, C. W., Hardage, L., & Miller, R. T. (1995). Multiple mechanisms for the detection of mirror symmetry. Spatial Vision, 9, 79–100.PubMedCrossRefGoogle Scholar
  35. van der Helm, P. A., & Leeuwenberg, E. L. J. (1996). Goodness of visual regularities: A nonstransformational approach. Psychological review, 103, 429–456.PubMedCrossRefGoogle Scholar
  36. van der Helm, P. A., & Leeuwenberg, E. L. J. (2004) Holographic goodness is not that bad: Reply to Olivers, Chater, and Watson (2004). Psychological Review, 111, 261–273.CrossRefGoogle Scholar
  37. van der Vloed, G., Casthó, Á, & van der Helm, P. A. (2007). Effects of asynchrony on symmetry perception. Psychological Research, 71, 170–177.PubMedCrossRefGoogle Scholar
  38. Wagemans, J., Van Gool, L., & d’Ydewalle, G. (1991). Detection of symmetry in tachistoschopically presented dot patterns: Effects of multiple axes and skewing. Perception & Psychophysics, 50, 413–427.Google Scholar
  39. Wagemans, J., Van Gool, L., Swinnen, V., & Van Horebeek, J. (1993). Higher-order structure in regularity detection. Vision Research, 33, 1067–1088.PubMedCrossRefGoogle Scholar
  40. Wenderoth, P. (1996). The effects of dot pattern parameters and constraints on the relative salience of vertical bilateral symmetry. Vision Research, 36, 2311–2320.PubMedCrossRefGoogle Scholar
  41. Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24, 55–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ryosuke Niimi
    • 1
  • Katsumi Watanabe
    • 2
    • 3
    • 4
  • Kazuhiko Yokosawa
    • 1
    Email author
  1. 1.Department of Psychology, Graduate School of Humanities and SociologyThe University of TokyoTokyoJapan
  2. 2.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
  3. 3.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  4. 4.ERATO, Japan Science and Technology AgencyAtsugiJapan

Personalised recommendations