Psychological Research

, Volume 71, Issue 3, pp 333–346 | Cite as

Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives

  • Amy L. SheltonEmail author
  • Holly A. Pippitt
Original Article


Ground-level and aerial perspectives in virtual space provide simplified conditions for investigating differences between exploratory navigation and map reading in large-scale environmental learning. General similarities and differences in ground-level and aerial encoding have been identified, but little is known about the specific characteristics that differentiate them. One such characteristic is the need to process orientation; ground-level encoding (and navigation) typically requires dynamic orientations, whereas aerial encoding (and map reading) is typically conducted in a fixed orientation. The present study investigated how this factor affected spatial processing by comparing ground-level and aerial encoding to a hybrid condition: aerial-with-turns. Experiment 1 demonstrated that scene recognition was sensitive to both perspective (ground-level or aerial) and orientation (dynamic or fixed). Experiment 2 investigated brain activation during encoding, revealing regions that were preferentially activated perspective as in previous studies (Shelton and Gabrieli in J Neurosci 22:2711–2717, 2002), but also identifying regions that were preferentially activated as a function of the presence or absence of turns. Together, these results differentiated the behavioral and brain consequences attributable to changes in orientation from those attributable to other characteristics of ground-level and aerial perspectives, providing leverage on how orientation information is processed in everyday spatial learning.


Medial Temporal Lobe Aerial Condition Aerial Image Encode Condition Inferior Parietal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dana Clark and Megan Carr for assistance with data collection and coding. We also thank Marci Flanery and Naohide Yamamoto for comments on the work.


  1. Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain, 122, 1613–1628.PubMedCrossRefGoogle Scholar
  2. Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6, 823–829.PubMedCrossRefGoogle Scholar
  3. Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35(2), 111–118.PubMedCrossRefGoogle Scholar
  4. Barnes, J., Howard, R. J., Senior, C., Brammer, M., Bullmore, E. T., Simmons, A., et al. (2000). Cortical activity during rotational and linear transformations. Neuropsychologia, 38, 1148–1156.PubMedCrossRefGoogle Scholar
  5. Bisiach E., Perani D., Vallar G., & Berti A. (1986). Unilateral neglect: Personal and extra-personal space. Neuropsychologia, 24,759–767.PubMedCrossRefGoogle Scholar
  6. Bonda, E., Petrides, M., Frey, S., & Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. PNAS, 92(24), 11180–11184.PubMedCrossRefGoogle Scholar
  7. Burgess, N. (2002). The hippocampus, space, and viewpoints in episodic memory. Quarterly Journal of Experimental Psychology, 55A(4), 1057–1080.Google Scholar
  8. Burgess, N., Jeffery, K. J., & O’Keefe, J. (Eds.). (1999). The hippocampal and parietal foundations of spatial cognition. Oxford: Oxford University Press.Google Scholar
  9. Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of life events. NeuroImage, 14, 439–453.PubMedCrossRefGoogle Scholar
  10. Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11(1), 9–24.PubMedCrossRefGoogle Scholar
  11. Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A., & McNaughton, B. L. (1994). Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Experimental Brain Research, 101, 8–23.CrossRefGoogle Scholar
  12. Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, D. J., Thompson, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89–100.PubMedCrossRefGoogle Scholar
  13. Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers, 25, 257–271.Google Scholar
  14. Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249.CrossRefGoogle Scholar
  15. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226.PubMedCrossRefGoogle Scholar
  16. Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37(5), 865–876.PubMedCrossRefGoogle Scholar
  17. Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology: Learning, Memory and Cognition (in press).Google Scholar
  18. Friston, K. J., Homes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 4, 189–210.Google Scholar
  19. Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.Google Scholar
  20. Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171.PubMedCrossRefGoogle Scholar
  21. Ghaëm, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., et al. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8, 739–744.PubMedCrossRefGoogle Scholar
  22. Goodridge, J. P., & Taube, J. S. (1995). Preferential use of the landmark navigational system by head direction cells in rats. Behavioral Neuroscience, 109, 49–61.PubMedCrossRefGoogle Scholar
  23. Halligan, P. W., & Marshall, J. C. (1991). Left neglect in near but not far space in man. Nature, 350, 498–500.PubMedCrossRefGoogle Scholar
  24. Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. G. (2000). Selective right parietal lobe activation during mental rotation: A parametric PET study. Brain, 123(1), 65–73.PubMedCrossRefGoogle Scholar
  25. Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.PubMedCrossRefGoogle Scholar
  26. Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11), 6336–6353.PubMedGoogle Scholar
  27. Holmes, A. P., & Friston, K. J. (1998). Generalisability, random effects and population inference. Neuroimage, 7, S754.Google Scholar
  28. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.PubMedGoogle Scholar
  29. Maguire, E. A. (2001). The retrosplenial contributions to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42, 225–238.PubMedCrossRefGoogle Scholar
  30. Maguire, E. A., Burgess, N., Donnott, J. G., Frackowiak, R. S. J., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there. A human navigation network. Science, 280, 921–924.Google Scholar
  31. McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial reasoning. LNAI 2685 (pp. 174–191). Berlin Heidelberg New York: Springer.Google Scholar
  32. McNamara, T. P., & Shelton, A. L. (2003). Cognitive maps and the hippocampus. Trends in Cognitive Science, 7, 333–335.CrossRefGoogle Scholar
  33. Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaëm, O., Petit, L., Zago, L., et al. (2000). Neural correlates of topographic mental exploration: The impact of route versus survey learning. NeuroImage, 12, 588–600.PubMedCrossRefGoogle Scholar
  34. Moeser, S. D. (1988). Cognitive mapping in a complex building. Environment and Behavior, 20, 21–49.CrossRefGoogle Scholar
  35. Montello, D. R., Waller, D., Hegarty, M., & Richardson, A. E. (2004). Spatial memory of real environments, virtual environments, and maps. In G. L. Allen (Eds.), Human spatial memory; remembering where (pp. 251–285). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  36. Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42, 952–962.PubMedCrossRefGoogle Scholar
  37. Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., et al. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.PubMedCrossRefGoogle Scholar
  38. Robertson, I. H., & Marshall, J. C. (Eds.). (1993). Unilateral neglect: Clinical and experimental studies. Hove, UK: Lawrence Erlbaum Associates.Google Scholar
  39. Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in ‘desk-top’ virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.CrossRefGoogle Scholar
  40. Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumors. Brain, 114, 349–360.PubMedCrossRefGoogle Scholar
  41. Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience, 22, 2711–2717.PubMedGoogle Scholar
  42. Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18, 442–449.PubMedCrossRefGoogle Scholar
  43. Shelton, A. L., & Jambulingam, N. (2006). What do you know? Self-assessed learning in route and survey environments, submitted for publication.Google Scholar
  44. Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.PubMedCrossRefGoogle Scholar
  45. Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 158–170.PubMedCrossRefGoogle Scholar
  46. Shelton, A. L., Yamamoto, N., Fields, A. W., & Spence, G. O. (2006). Sequential information in route and survey environmental learning, submitted for publication.Google Scholar
  47. Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9–55). New York: Academic.Google Scholar
  48. Tagaris, G. A. (1998). Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns. Brain Research Reviews, 26(2–3), 106–112.PubMedCrossRefGoogle Scholar
  49. Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., & Hirayama, K. (1997). Pure topographical disorientation due to right retrosplenial lesion. Neurology, 49, 464–469.PubMedGoogle Scholar
  50. Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.PubMedGoogle Scholar
  51. Taube, J. S., Goodridge, J. P., Golob, E. J., Dudchenko, P. A., & Stackman, R. W. (1996). Processing the head direction cell signal: A review and commentary. Brain Research Bulletin, 40, 477–486.PubMedCrossRefGoogle Scholar
  52. Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.PubMedCrossRefGoogle Scholar
  53. Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer simulated environment. Journal of Environmental Psychology, 14, 303–313.CrossRefGoogle Scholar
  54. Tversky, B. (1991). Spatial mental models. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 27, pp. 109–145). San Diego: Academic.Google Scholar
  55. Vanrie, J., Béatse, E., Wagemans, J., Sunaert, S., & Van Hecke, P. (2002). Mental rotation versus invariant features in object perception from different viewpoints: An fMRI study. Neuropsychologia, 40, 917–930.PubMedCrossRefGoogle Scholar
  56. Waterman, S., & Gordon, D. (1984). A quantitative-comparative approach to analysis of distortion in mental maps. Professional Geographer, 36(3), 326–337.CrossRefGoogle Scholar
  57. Weiss, P. H., Marshall, J. C., Wunderlich, G., Tellmann, L., Halligan, P. W., Freund, H.-J., et al. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123, 2531–2541.PubMedCrossRefGoogle Scholar
  58. Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1(4), 447–473.CrossRefGoogle Scholar
  59. Wolbers, T., & Buchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333–3340.PubMedCrossRefGoogle Scholar
  60. Yamamoto, N., & Shelton, A. L. (2005). Visual and proprioceptive representations in spatial memory. Memory & Cognition, 33(1), 140–150.Google Scholar
  61. Zacks, J., Rypma, B., Gabrieli, J. D. E., Tversky, B., & Glover, G. H. (1999). Imagined transformations of bodies: An fMRI investigation. Neuropsychologia, 37(9), 1029–1040.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Psychological & Brain SciencesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations