Psychological Research

, Volume 71, Issue 3, pp 298–313 | Cite as

Spatial updating in virtual reality: the sufficiency of visual information

  • Bernhard E. Riecke
  • Douglas W. Cunningham
  • Heinrich H. Bülthoff
Original Article


Robust and effortless spatial orientation critically relies on “automatic and obligatory spatial updating”, a largely automatized and reflex-like process that transforms our mental egocentric representation of the immediate surroundings during ego-motions. A rapid pointing paradigm was used to assess automatic/obligatory spatial updating after visually displayed upright rotations with or without concomitant physical rotations using a motion platform. Visual stimuli displaying a natural, subject-known scene proved sufficient for enabling automatic and obligatory spatial updating, irrespective of concurrent physical motions. This challenges the prevailing notion that visual cues alone are insufficient for enabling such spatial updating of rotations, and that vestibular/proprioceptive cues are both required and sufficient. Displaying optic flow devoid of landmarks during the motion and pointing phase was insufficient for enabling automatic spatial updating, but could not be entirely ignored either. Interestingly, additional physical motion cues hardly improved performance, and were insufficient for affording automatic spatial updating. The results are discussed in the context of the mental transformation hypothesis and the sensorimotor interference hypothesis, which associates difficulties in imagined perspective switches to interference between the sensorimotor and cognitive (to-be-imagined) perspective.


Optic Flow Mental Rotation Physical Motion Mental Transformation Spatial Frequency Content 



This research was funded by the Max Planck Society and the Deutsche Forschungsgemeinschaft (DFG SFB 550 B2). We would like to thank two reviewers for helpful comments on an earlier draft of this manuscript. Furthermore, we would like to thank Markus von der Heyde for helpful discussions and technical assistance.


  1. Avraamides, M. N., & Ioannidou, L. M. (2005). Locating targets from imagined perspectives: Labeling vs. pointing. In Proceedings of the XXVII Annual Meeting of the Cognitive Science Society, Stresa, Italy (pp. 175–180). Mahwah: Lawrence Erlbaum.Google Scholar
  2. Batschelet, E. (1981). Circular statistics in biology. London: Academic.Google Scholar
  3. Boer, L. C. (1991). Mental rotation in perspective problems. Acta Psychologica, 76(1), 1–9.PubMedCrossRefGoogle Scholar
  4. Bremmer, F., & Lappe, M. (1999). The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Experimental Brain Research, 127(1), 33–42.CrossRefGoogle Scholar
  5. Brockmole, J. R., & Wang, R. X. F. (2003). Changing perspective within and across environments. Cognition, 87(2), B59–B67.PubMedCrossRefGoogle Scholar
  6. Chance, S. S., Gaunet, F., Beall, A. C., & Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence Teleoperators and Virtual Environments, 7(2), 168–178.CrossRefGoogle Scholar
  7. Christou, C., & Bülthoff, H. (1999). The perception of spatial layout in a virtual world (Tech. Rep. No. 75). Max-Planck-Institut für biologische Kybernetik. (Available:
  8. Christou, C., Tjan, B., & Bülthoff, H. (1999). Viewpoint information provided by familiar environment facilitates object identification (Tech. Rep. No. 68). Max-Planck-Institut für biologische Kybernetik. (Available:
  9. Christou, C. G., Tjan, B. S., & Bülthoff, H. H. (2003). Extrinsic cues aid shape recognition from novel viewpoints. Journal of Vision, 3, 183–198. ( Scholar
  10. Cooper, L. A., & Shepard, R. N. (1973). Time required to prepare for a rotated stimulus. Memory & Cognition, 1(3), 246–250.Google Scholar
  11. de Vega, M., & Rodrigo, M. J. (2001). Updating spatial layouts mediated by pointing and labelling under physical and imaginary rotation. European Journal of Cognitive Psychology, 13(3), 369–393.Google Scholar
  12. Dichgans, J., & Brandt, T. (1978). Visual vestibular interaction: Effects on self-motion perception and postural control. In R. Held, H. W. Leibowitz, & H.L. Teuber (Eds.), Perception (vol. VIII, pp. 756–804). Berlin Heidelberg New York: Springer.Google Scholar
  13. Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition. Psychological Science, 8(4), 302–307.CrossRefGoogle Scholar
  14. Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology. Learning, Memory and Cognition, 21(2), 483–500.CrossRefGoogle Scholar
  15. Farrell, M. J., & Robertson, I. H. (1998). Mental rotation and the automatic updating of bodycentered spatial relationships. Journal of Experimental Psychology. Learning, Memory and Cognition, 24(1), 227–233.CrossRefGoogle Scholar
  16. Farrell, M. J., & Robertson, I. H. (2000). The automatic updating of egocentric spatial relationships and its impairment due to right posterior cortical lesions. Neuropsychologia, 38(5), 585–595.PubMedCrossRefGoogle Scholar
  17. Farrell, M. J., & Thomson, J. A. (1998). Automatic spatial updating during locomotion without vision. Quarterly Journal of Experimental Psychology Section A Human Experimental Psychology, 51(3), 637–654.Google Scholar
  18. Hettinger, L. J. (2002). Illusory self-motion in virtual environments. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 471–492). Hillsdale: Lawrence Erlbaum.Google Scholar
  19. Hintzman, D. L., O’Dell, C. S., & Arndt, D. R. (1981). Orientation in cognitive maps. Cognitive Psychology, 13(2), 149–206.PubMedCrossRefGoogle Scholar
  20. Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 208–217.Google Scholar
  21. Holmes, M. C., & Sholl, M. J. (2005). Allocentric coding of object-to-object relations in overlearned and novel environments. Journal of Experimental Psychology. Learning. Memory and Cognition, 31(5), 1069–1087.CrossRefGoogle Scholar
  22. Ivanenko, Y. P., Viaud-Delmon, I., Siegler, I., Israël, I., & Berthoz, A. (1998). The vestibulo-ocular reflex and angular displacement perception in darkness in humans: adaptation to a virtual environment. Neuroscience Letters, 241(2–3), 167–170.PubMedGoogle Scholar
  23. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychology Science, 9(4), 293–298.CrossRefGoogle Scholar
  24. Loomis, J. M., & Beall, A. C. (1998). Visually controlled locomotion: Its dependence on optic flow, three-dimensional space perception, and cognition. Ecological Psychology, 10(3–4), 271–285.CrossRefGoogle Scholar
  25. Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5(3), 72–77.CrossRefGoogle Scholar
  26. May, M. (1996). Cognitive and embodied modes of spatial imagery. Psychologische Beiträge, 38(3/4), 418–434.Google Scholar
  27. May, M. (2000). Kognition im Umraum [cognition in spatial surroundings]. Wiesbaden: DUV: Kognitionswissenschaft.Google Scholar
  28. May, M. (2001). Mechanismen räumlicher Perspektivwechsel [mechanisms of spatial perspective switches]. In R. K. Silbereisen & M. Reitzle (Eds.), Psychologie 2000 (pp. 627–634). Lengerich: Pabst.Google Scholar
  29. May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48(2), 163–206.PubMedCrossRefGoogle Scholar
  30. May, M., & Klatzky, R. L. (2000). Path integration while ignoring irrelevant movement. Journal of Experimental Psychology. Learning, Memory and Cognition, 26(1), 169–186.CrossRefGoogle Scholar
  31. McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18(1), 87–121.PubMedCrossRefGoogle Scholar
  32. Mou, W. M., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology. Learning, Memory and Cognition, 30(1), 142–157.CrossRefGoogle Scholar
  33. Presson, C. C., & Montello, D. R. (1994). Updating after rotational and translational body movements: Coordinate structure of perspective space. Perception, 23(12), 1447–1455.PubMedCrossRefGoogle Scholar
  34. Riecke, B. E., & von der Heyde, M. (2002). Qualitative modeling of spatial orientation processes using logical propositions: Interconnecting spatial presence, spatial updating, piloting, and spatial cognition (Tech. Rep. No. 100). MPI for Biological Cybernetics (Avaliable:
  35. Riecke, B. E., von der Heyde, M., & Bülthoff, H. H. (2001). How real is virtual reality really? Comparing spatial updating using pointing tasks in real and virtual environments. Journal of Vision, 1(3), 321a (
  36. Riecke, B. E., van Veen, H. A. H. C., & Bülthoff, H. H. (2002). Visual homing is possible without landmarks: A path integration study in virtual reality. Presence Teleoperators and Virtual Environments, 11(5), 443–473.CrossRefGoogle Scholar
  37. Riecke, B. E., von der Heyde, M., & Bülthoff, H. H. (2004). Spatial updating in real and virtual environments contribution and interaction of visual and vestibular cues. In ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV) (pp. 9–17). Los Angeles, USA. (Available:
  38. Riecke, B. E., Schulte-Pelkum, J., & Bülthoff, H. H. (2005a). Perceiving simulated ego-motions in virtual reality comparing large screen displays with HMDs. In B. E. Rogowitz, T. N. Pappas, & S. J. Daly (Eds.), SPIE invited paper on VALVE: Vision, action, and locomotion in virtual (and real) environments (pp. 344–355). San Jose, CA, USA.Google Scholar
  39. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005b). Towards lean and elegant self-motion simulation in virtual reality. In Proceedings of IEEE VR2005 (pp. 131–138). Bonn, Germany.Google Scholar
  40. Riecke, B. E., Västfjäll, D., Larsson, P., & Schulte-Pelkum, J. (2005c). Topdown and multimodal influences on self-motion perception in virtual reality. In Proceedings of HCI International 2005. Las Vegas, NV, USA.Google Scholar
  41. Riecke, B. E., von der Heyde, M., & Bülthoff, H. H. (2005d). Visual cues can be sufficient for triggering automatic, reflex-like spatial updating. ACM Transactions on Applied Perception (TAP), 2(3), 183–215.CrossRefGoogle Scholar
  42. Riecke, B. E., Schulte-Pelkum, J., & Caniard, F. (2006). Using the perceptually oriented approach to optimize spatial presence & egomotion simulation. In Handbook of Presence. Hillsdale: Lawrence Erlbaum (submitted).Google Scholar
  43. Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology. Learning, Memory and Cognition, 15(6), 1157–1165.CrossRefGoogle Scholar
  44. Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L., & Carr, W. (1998). Mental representations of large and small spatial layouts are orientation dependent. Journal of Experimental Psychology. Learning, Memory and Cognition, 24(1), 215–226.CrossRefGoogle Scholar
  45. Schulte-Pelkum, J., Riecke, B. E., Caniard, F., & Bülthoff, H. H. (2006). Influence of brief physical accelerations and vibrations on visually induced linear vection (manuscript in preparation).Google Scholar
  46. Shepard, R. N., & Metzler, J. (1971). Mental rotation of 3-dimensional objects. Science, 171(3972), 701–703.PubMedCrossRefGoogle Scholar
  47. Sholl, M. J., & Bartels, G. P. (2002). The role of self-to-object updating in orientation-free performance on spatial memory tasks. Journal of Experimental Psychology Learning. Memory and Cognition, 28(3), 422–436.CrossRefGoogle Scholar
  48. Sholl, M. J., & Nolin, T. L. (1997). Orientation specificity in representations of place. Journal of Experimental Psychology.Learning, Memory and Cognition, 23(6), 1494–1507.CrossRefGoogle Scholar
  49. Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9(4), 315–320.CrossRefGoogle Scholar
  50. Simons, D. J., Wang, R. X. F., & Roddenberry, D. (2002). Object recognition is mediated by extra-retinal information. Perception & Psychophysics, 64(4), 521–530.Google Scholar
  51. Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.PubMedCrossRefGoogle Scholar
  52. Waller, D., Montello, D. R., Richardson, A. E., & Hegarty, M. (2002). Orientation specificity and spatial updating of memories for layouts. Journal of Experimental Psychology. Learning, Memory and Cognition, 28(6), 1051–1063.CrossRefGoogle Scholar
  53. Wang, R. F. (1999). Representing a stable environment by egocentric updating and invariant representations. Spatial Cognition and Computation, 1, 431–445.CrossRefGoogle Scholar
  54. Wang, R. F. (2005). Beyond imagination: Perspective change problems revisited. Psicologica, 26(1), 25–38.Google Scholar
  55. Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6(9), 376–382.PubMedCrossRefGoogle Scholar
  56. Wang, R. X. F., & Brockmole, J. R. (2003). Human navigation in nested environments. Journal of Experimental Psychology. Learning, Memory and Cognition, 29(3), 398–404.CrossRefGoogle Scholar
  57. Wang, R. X. F., & Simons, D. J. (1999). Active and passive scene recognition across views. Cognition, 70(2), 191–210.PubMedCrossRefGoogle Scholar
  58. Wang, R. X. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215–250.PubMedCrossRefGoogle Scholar
  59. Warren, R., & Wertheim, A. H. (Eds.) (1990). Perception & control of self-motion. New Jersey, London: Erlbaum.Google Scholar
  60. Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4(2), 213–216.PubMedCrossRefGoogle Scholar
  61. Wong, S. C. P., & Frost, B. J. (1981). The effect of visual-vestibular conflict on the latency of steadystate visually induced subjective rotation. Perception & Psychophysics, 30(3), 228–236.Google Scholar
  62. Wraga, M. (2003). Thinking outside the body: An advantage for spatial updating during imagined versus physical self-rotation. Journal of Experimental Psychology. Learning, Memory and Cognition, 29(5), 993–1005.CrossRefGoogle Scholar
  63. Wraga, M., Creem, S. H., & Proffitt, D. R. (2000). Updating displays after imagined object and viewer rotations. Journal of Experimental Psychology. Learning, Memory and Cognition, 26(1), 151–168.CrossRefGoogle Scholar
  64. Wraga, M., Creem-Regehr, S. H., & Proffitt, D. R. (2004). Spatial updating of virtual displays during self and display rotation. Memory & Cognition, 32(3), 399–415.Google Scholar
  65. Yardley, L., & Higgins, M. (1998). Spatial updating during rotation: The role of vestibular information and mental activity. Journal of Vestibular Research. Equilibrium and Orientation, 8(6), 435–442.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bernhard E. Riecke
    • 1
  • Douglas W. Cunningham
    • 1
  • Heinrich H. Bülthoff
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany

Personalised recommendations