Psychological Research

, Volume 71, Issue 3, pp 252–264 | Cite as

Using geometry to specify location: implications for spatial coding in children and nonhuman animals

Original Article

Abstract

The study of spatial cognition has benefited greatly from a technique known as the disorientation procedure. This procedure was originally used with rats to show that they relied on the geometry of an enclosed space to locate a target hidden in that space. Disorientation has since been used with a variety of mobile animals, including human children, to examine the coding of geometric information. Here, we focus mostly on our recent work with young children. We examine a set of issues concerning reorientation—namely, the nature of geometric coding, the processes invoked by disorientation, and the developmental origins of using geometric information to determine location. We have employed a variety of methods to examine these issues; the methods include analyzing search behaviors, using spaces of different shapes, varying viewing position, and comparing different disorientation procedures. The implications for how children and nonhuman animals code geometric information are discussed.

Notes

Acknowledgments

This research was supported by grants from the National Science Foundation (BCS9904315, REC-0087516). The authors would like to thank two reviewers for their comments on an earlier version of this manuscript.

References

  1. Bai, D. L., & Bertenthal, B. I. (1992). Locomotor status and the development of spatial search skills. Child Development, 63, 215–226.PubMedCrossRefGoogle Scholar
  2. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.PubMedCrossRefGoogle Scholar
  3. Biederman, I., & Bar, M. (1999). One-shot viewpoint invariance in matching novel objects. Vision Research, 39, 2885–2899.PubMedCrossRefGoogle Scholar
  4. Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.PubMedCrossRefGoogle Scholar
  5. Cheng, K. (1988). Some psychophysics of the pigeon’s use of landmarks. Journal of Comparative Physiology A, 162, 815–826.CrossRefGoogle Scholar
  6. Cheng, K. (1989). The vector sum model of pigeon landmark use. Journal of Experimental Psychology: Animal Behavior and Processes, 15, 366–375.CrossRefGoogle Scholar
  7. Cheng, K. (2005). Reflections on geometry and navigation. Connection Science, 17, 5–21.CrossRefGoogle Scholar
  8. Cheng, K., & Gallistel, C. R. (1984). Testing the geometric power of an animal’s spatialrepresentation. In H.L. Roitblat, T.G. Bever, & H.S. Terrace (Eds.). Animal cognition: Proceedings of the Harry Frank Guggenheim Conference, June 2-4, 1982 (pp. 409–423). Hillsdale, NJ: Erlbaum.Google Scholar
  9. Cheng, K., & Gallistel, C. R. (2005). Shape parameters explain data form spatial transformations: Comment on Pearce et al. (2004) and Tommasi & Polli (2004) Journal of Experimental Psychology: Animal Behavior Processes, 31, 254–259.PubMedCrossRefGoogle Scholar
  10. Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation?Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 1–23.Google Scholar
  11. Cohen, L. B., & Younger, B. A. (1984). Infant Perception of Angular Relations. Infant Behavior and Development, 7, 37–47.CrossRefGoogle Scholar
  12. Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition. Psychological Science, 8, 302–307.CrossRefGoogle Scholar
  13. Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.Google Scholar
  14. Gallistel, C. R., & Cramer, A. E. (1996). Computations of metric maps in mammals: Getting oriented and choosing a multi-destination route. The Journal of Experimental Biology, 199, 211–217.PubMedGoogle Scholar
  15. Gouteux, S., & Spelke, E. S. (2001). Children’s use of geometry and landmarks to reorient in an open space. Cognition, 81, 119–148.PubMedCrossRefGoogle Scholar
  16. Gouteux, S., Thinus-Blanc, C., & Vauclair, J. (2001a). Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General, 130, 505–519.CrossRefGoogle Scholar
  17. Gouteux, S., Vauclair, J., & Thinus-Blanc, C. (2001b). Reorientation in a small-scaleenvironment by 3-, 4-, and 5-year-old children. Cognitive Development, 16, 853–869.CrossRefGoogle Scholar
  18. Gray, E. R., Bloomfield, L. L., Ferrey, A., Spetch, M. L., & Sturdy, C. B. (2005). Spatial encoding in mountain chickadees: Features overshadow geometry. Biology Letters, 1, 314–317.PubMedCrossRefGoogle Scholar
  19. Hermer, L., & Spelke, E. (1994). A geometric process for spatial reorientation in young children. Nature, 370, 57–59.PubMedCrossRefGoogle Scholar
  20. Hermer, L., & Spelke, E. (1996). Modularity and development: A case of spatial reorientation. Cognition, 61, 195–232.PubMedCrossRefGoogle Scholar
  21. Hupbach, A., & Nadel, L. (2005). Reorientation in a rhombic environment: No evidence for an encapsulated geometric model. Cognitive Development, 20, 279–302.CrossRefGoogle Scholar
  22. Huttenlocher, J., & Presson, C. C. (1973). Mental rotation and the perspective problem. Cognitive Psychology, 4, 277–299.CrossRefGoogle Scholar
  23. Huttenlocher, J., & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive Psychology, 11, 375–394.PubMedCrossRefGoogle Scholar
  24. Huttenlocher, J., & Newcombe, N. (1984). The child’s representations of information aboutlocation. In C. Sophian (Ed.), Origins of cognitive skills (pp. 81–111). Hillsdale, NJ: Erlbaum.Google Scholar
  25. Huttenlocher, J., Newcombe, N., & Sandberg, E. (1994). The coding of spatial location in young children. Cognitive Psychology, 27, 115–147.PubMedCrossRefGoogle Scholar
  26. Huttenlocher, J., & Vasilyeva, M. (2003). How toddlers represent enclosed spaces. Cognitive Science, 27, 749–766.CrossRefGoogle Scholar
  27. Huttenlocher, J., Lourenco, S. F., & Vasilyeva, M. (2006). Perspectives on spatial development. In L. B. Smith, M. Gasser, & K. Mix (Eds.). The spatial foundations of cognition and language. Oxford University Press, New York (in press).Google Scholar
  28. Jacobs, D. W. (2003). What makes viewpoint-invariant properties perceptually salient? Journal of Optical Society of America, 20, 1304–1320.Google Scholar
  29. Kelly, D. M., & Spetch, M. L. (2001). Pigeons encode relative geometry. Journal of Experimental Psychology: Animal Behavior Processes, 27, 417–422.PubMedCrossRefGoogle Scholar
  30. Kelly, D. M., & Spetch, M. L. (2004a). Reorientation in a two-dimensional environment: I. Do adults encode the featural and geometric properties of a two-dimensional schematic of a room? Journal of Comparative Psychology, 118, 82–94.CrossRefGoogle Scholar
  31. Kelly, D. M., & Spetch, M. L. (2004b). Reorientation in a two-dimensional environment: II. Do pigeons (Columba livia) encode the featural and geometric properties of a two-dimensional schematic of a room? Journal of Comparative Psychology, 118, 384–395.CrossRefGoogle Scholar
  32. Kelly, D. M., Spetch, M. L., & Heth, C. D. (1998). Pigeons’ (Columba livia) encoding of geometric and featural properties of a spatial environment. Journal of Comparative Psychology, 112, 259–269.CrossRefGoogle Scholar
  33. Landau, B., & Spelke, E. (1988). Geometric complexity and object search in infancy. Developmental Psychology, 24, 512–521.CrossRefGoogle Scholar
  34. Learmonth, A. E., Newcombe, N., & Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80, 225–244.PubMedCrossRefGoogle Scholar
  35. Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children’s use of landmarks: Implications for modularity theory. Psychological Science, 13, 337–341.PubMedCrossRefGoogle Scholar
  36. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.PubMedCrossRefGoogle Scholar
  37. Lourenco, S. F., & Huttenlocher, J. (2006). How do young children determine location? Evidence from disorientation tasks. Cognition 100, 511–529.Google Scholar
  38. Lourenco, S. F., Huttenlocher, J., & Fabian, L. (2005a). Coding geometric information in infancy. Poster presented at the biennial meeting of the Cognitive Development Society, San Diego.Google Scholar
  39. Lourenco, S. F., Huttenlocher, J., & Vasilyeva, M. (2005b). Toddlers’ representations of space: The role of viewer perspective. Psychological Science, 16, 255–259.CrossRefGoogle Scholar
  40. Margules, J., & Gallistel, C. R. (1988). Heading in the rat: Determination by environmental shape. Animal Learning & Behavior, 16, 404–410.Google Scholar
  41. Newcombe, N. S. (2002a). The nativist-empiricist controversy in the context of recent research on spatial and quantitative development. Psychological Science, 13, 395–401.CrossRefGoogle Scholar
  42. Newcombe, N. S. (2002b). Spatial cognition. In H. Pashler & D. Medin (Eds.), Stevens’ handbook of experimental psychology: Vol. 2. Memory and cognitive processes (3rd ed., pp. 113–163). New York: Wiley.Google Scholar
  43. Newcombe, N. S. (2006). Evidence for and against a geometric module: The roles of language and action. In J. Rieser, J. Lockman & C. Nelson (Eds.), Action as an organizer of learning and development. Minnesota Symposium on Child Development Series. Lawrence Erlbaum Associates, New Jersey.Google Scholar
  44. Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge, MA: MIT Press.Google Scholar
  45. Newcombe, N., Huttenlocher, J., Drummey, A. B., Wiley, J. G. (1998). The development of spatial location coding: Place learning and dead reckoning in the second and third years. Cognitive Development, 13, 185–200.CrossRefGoogle Scholar
  46. Pearce, J. M., Good, M. A., Jones, P. M., & McGregor, A. (2004). Transfer of spatial behavior between different environments: Implications for theories of spatial learning and for the role of the hippocampus in spatial learning. Journal of Experimental Psychology: Animal Behavior Processes, 30, 135–147.PubMedCrossRefGoogle Scholar
  47. Piaget, J., & Inhelder, B. (1967). The child’s conception of space (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton. (Original work published 1948.).Google Scholar
  48. Platt, J. E., & Cohen, S. (1981). Mental rotation task performance as a function of age and training. Journal of Psychology, 108, 173–178.Google Scholar
  49. Presson, C. C. (1982). Strategies in spatial reasoning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 243–251.CrossRefGoogle Scholar
  50. Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21, 480–497.PubMedCrossRefGoogle Scholar
  51. Rosser, R., Ensing, S., Gilder, P., & Lane, S. (1984). An information-processing analysis of children’s accuracy in predicting the appearance of rotated stimuli. Child Development, 55, 2204–2211.PubMedCrossRefGoogle Scholar
  52. Rosser, R., Ensing, S., & Mazzeo, J. (1985). The role of stimulus salience in young children’s ability to discriminate two-dimensional rotations: Reflections on a paradigm. Contemporary Educational Psychology, 10, 95–103.CrossRefGoogle Scholar
  53. Schwartz, M., & Day, R. H. (1979). Visual shape perception in early infancy. Monographs of the Society for Research in Child Development, 44(7, Serial No. 182).Google Scholar
  54. Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9, 315–320.CrossRefGoogle Scholar
  55. Slater, A., Morison, V., Town, C., & Rose, D. (1985). Movement perception and identity constancy in the new-born baby. British Journal of Developmental Psychology, 3, 211–220.Google Scholar
  56. Slater, A., Mattock, A., Brown, E., & Bremner, J. G. (1991). Form perception at birth: Cohen and Younger (1984) revisited. Journal of Experimental Child Psychology, 51, 395–406.PubMedCrossRefGoogle Scholar
  57. Sovrano, V. A., Bisazza, A., & Vallortigara, G. (2002). Modularity and spatial orientation in a simple mind: Encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition, 85, B51–B59.PubMedCrossRefGoogle Scholar
  58. Tommasi, L. (2005). Geometric determinants of spatial reorientation: Reply to Cheng and Gallistel (2005). Journal of Experimental Psychology: Animal Behavior Processes, 31, 260–261.CrossRefGoogle Scholar
  59. Tommasi, L., & Polli, C. (2004). Representation of two geometric features of the environment in the domestic chick (Gallus gallus). Animal Cognition, 7, 53–59.PubMedCrossRefGoogle Scholar
  60. Vargas, J. P., Lopez, J. C., Salas, C., & Thinus-Blanc, C. (2004). Encoding of geometric and featural spatial information by goldfish (Carassius auratus). Journal of Comparative Psychology, 118, 206–216.PubMedCrossRefGoogle Scholar
  61. Wang, R. F., & Spelke, E. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6, 376–382.PubMedCrossRefGoogle Scholar
  62. Wang, R. F., Hermer, L., & Spelke, E. S. (1999). Mechanisms of reorientation and object localization by children: A comparison with rats. Behavioral Neuroscience, 113, 475–485.PubMedCrossRefGoogle Scholar
  63. Wraga, M., Creem, S. H., & Proffitt, D. R. (2000). Updating displays after imagined object and viewer rotations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 151–168.PubMedCrossRefGoogle Scholar
  64. Wraga, M., Creem-Regehr, S. H., & Proffitt, D. R. (2004). Spatial updating of virtual displays during self- and display rotation. Memory and Cognition, 32, 399–415.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of ChicagoChicagoUSA

Personalised recommendations