Psychological Research

, Volume 71, Issue 6, pp 687–693 | Cite as

The effects of subthreshold synchrony on the perception of simultaneity

  • Mark A. Elliott
  • Zhuanghua Shi
  • Fatma Sürer
Original Article


We aimed to examine the effects of subthreshold synchrony and asynchrony on the perception of simultaneity. We rendered simultaneous or asynchronous luminance changes below detection thresholds by embedding them in a sequence of rapidly onsetting flankers. Still, simultaneity of subthreshold luminance changes can influence decisions concerning the simultaneity of clearly visible changes in luminance: across a range of very brief target SOAs, subthreshold synchrony was found to increase the tendency to report ‘simultaneity’, although simultaneity thresholds themselves remained largely uninfluenced. These effects are discussed in terms of the early synchronization of sensory mechanisms and the extent to which this pattern of synchronization influences the perception of relations between events in time.


Psychometric Function Background Luminance Luminance Change Target Luminance Simultaneity Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for suggestions from Joe Krummenacher during the formulation of our original research questions, to Ulrich Ansorge, Michael Herzog and one anonymous reviewer for their helpful suggestions on the improvement of the manuscript. This research was conducted at the LMU in Munich and was supported by German Research Council (DFG) project grant EL 248/1 to MAE.


  1. Brecher, G. A. (1932). Die Entstehung und biologische Bedeutung der subjectktiven Zeiteinheit—des Momentes. Zeitschrift für vergleichende Physiologie, 18, 204–243.Google Scholar
  2. Efron, R. (1970a). The relationship between the duration of a stimulus and the duration of a perception. Neuropsychologia, 8, 37–55.CrossRefGoogle Scholar
  3. Efron, R. (1970b). The minimum duration of a perception. Neuropsychologia, 8, 57–63.CrossRefGoogle Scholar
  4. Elliott, M. A., & Müller, H. J. (1998). Synchronous information presented in 40-Hz flicker enhances visual feature binding. Psychological Science, 9 (4), 277–283.CrossRefGoogle Scholar
  5. Elliott, M. A., & Müller, H. J. (2000). Evidence for 40-Hz oscillatory short-term visual memory revealed by human reaction-time measurements. Journal of Experimental Psychology: Learning, Memory and Cognition, 26 (3), 703–718.CrossRefGoogle Scholar
  6. Elliott, M. A., & Müller, H. J. (2001). Effects of stimulus synchrony on mechanisms of perceptual organization. Visual Cognition, 8 (5), 655–677.CrossRefGoogle Scholar
  7. Exner, S. (1875). Experimentelle Untersuchungen der einfachsten psychischen Processe. Pflügers Archiv, 11, 403–432.CrossRefGoogle Scholar
  8. Geissler, H.-G., & Kompass, R. (2001). Temporal constraints on binding? Evidence from quantal state transitions in perception. Visual Cognition, 5, 679–696.CrossRefGoogle Scholar
  9. Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.CrossRefPubMedGoogle Scholar
  10. Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Perception & Psychophysics, 63 (8), 1421–1455.Google Scholar
  11. Klotz, W., & Neumann, O. (1999). Motor activation without conscious discrimination in metacontrast masking. Journal of Experimental Psychology: Human Perception and Performance, 25, 976–992.CrossRefGoogle Scholar
  12. Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.CrossRefPubMedGoogle Scholar
  13. Sweet, A. L. (1953). Temporal discrimination by the human eye. American Journal of Psychology, 66 (2), 185–198.PubMedCrossRefGoogle Scholar
  14. Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35 (17), 2503–2522.CrossRefPubMedGoogle Scholar
  15. von Békésy, G. (1936). Über die Hörschwelle und Fühlgrenze langsamer sinusförmiger Luftdruckschwankungenen. Annalen der Physik, 26, 554–556.CrossRefGoogle Scholar
  16. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences, 100, 6275–6280.CrossRefGoogle Scholar
  17. Wehrhahn, C., & Rapf, D. (1992). ON- and OFF-pathways form separate neural substrates for motion perception: psychophysical evidence. Journal of Neuroscience, 12 (6), 2247–2250.PubMedGoogle Scholar
  18. Westheimer, G., & McKee, S. P. (1977). Perception of temporal order in adjacent visual stimuli. Vision Research, 17 (8), 887–892.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mark A. Elliott
    • 1
    • 2
  • Zhuanghua Shi
    • 2
  • Fatma Sürer
    • 2
    • 3
  1. 1.Department of PsychologyNational University of IrelandGalwayIreland
  2. 2.Department PsychologieLudwig-Maximilians-UniversitätMunichGermany
  3. 3.Neurologische Klinik und PoliklinikLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations