Psychological Research

, Volume 71, Issue 1, pp 22–29 | Cite as

Intentional control of attention: action planning primes action-related stimulus dimensions

  • Sabrina Fagioli
  • Bernhard HommelEmail author
  • Ricarda Ines Schubotz
Original Article


Neurophysiological observations suggest that attending to a particular perceptual dimension, such as location or shape, engages dimension-related action, such as reaching and prehension networks. Here we reversed the perspective and hypothesized that activating action systems may prime the processing of stimuli defined on perceptual dimensions related to these actions. Subjects prepared for a reaching or grasping action and, before carrying it out, were presented with location- or size-defined stimulus events. As predicted, performance on the stimulus event varied with action preparation: planning a reaching action facilitated detecting deviants in location sequences whereas planning a grasping action facilitated detecting deviants in size sequences. These findings support the theory of event coding, which claims that perceptual codes and action plans share a common representational medium, which presumably involves the human premotor cortex.


Stimulus Dimension Stimulus Event Premotor Cortex Perceptual Event Perceptual Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by a grant of the Deutsche Forschungsgemeinschaft to BH (Priority Program on Executive Functions, HO 1430/8-2), and prepared during a sabbatical of SF at Leiden University.


  1. Bekkering, H., & Neggers, S. F. W. (2002). Visual search is modulated by action intentions. Psychological Science, 13, 370–374.PubMedCrossRefGoogle Scholar
  2. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547.CrossRefPubMedGoogle Scholar
  3. Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Behavioral and Brain Sciences, 21, 667–684.CrossRefPubMedGoogle Scholar
  4. Craighero, L., Fadiga, L., Rizzolatti, G., & Umiltà, C. A. (1999). Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance, 25, 1673–1692.CrossRefPubMedGoogle Scholar
  5. Elsner, B., Hommel, B., Mentschel, C., Drzezga, A., Prinz, W., Conrad, B. et al. (2002). Linking actions and their perceivable consequences in the human brain. Neuroimage, 17, 364–372.CrossRefPubMedGoogle Scholar
  6. Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (2000). Visuomotor neurons: Ambiguity of the discharge or ‘motor’ perception? International Journal of Psychophysiology, 35, 165–177.PubMedGoogle Scholar
  7. Genzano, V. R., Di Nocera, F., & Ferlazzo, F. (2001). Upper/lower visual field asymmetry on a spatial relocation memory task. Neuroreport, 12, 1227–1230.CrossRefPubMedGoogle Scholar
  8. Hamilton, A., Joyce, D. W., Flanagan, R., Frith, C. D., & Wolpert, D. M. (2005). Kinematic cues in perceptual weight judgment and their origins in box lifting. Psychological Research, this volume.Google Scholar
  9. Hannus, A., Cornelissen, F. W., Lindemann, O., & Bekkering, H. (2005). Selection-for-action in visual search. Acta Psychologica, 118, 171–191.CrossRefPubMedGoogle Scholar
  10. Hommel, B. (1998). Perceiving one’s own action—and what it leads to. In J. S. Jordan (Ed.), Systems theory and apriori aspects of perception (pp. 143–179). Amsterdam: North-Holland.CrossRefGoogle Scholar
  11. Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494–500.CrossRefPubMedGoogle Scholar
  12. Hommel, B. (2005a). How we do what we want: A neuro-cognitive perspective on human action planning. In R. J. Jorna, W. van Wezel, & A. Meystel (Eds.), Planning in intelligent systems: Aspects, motivations and methods. New York: Wiley. In pressGoogle Scholar
  13. Hommel, B. (2005b). Feature integration across perception and action: Event files affect response choice. Psychological Research, this volume.Google Scholar
  14. Hommel, B., & Knuf, L. (2000). Action related determinants of spatial coding in perception and memory. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition II: Integrating abstract theories, empirical studies, formal methods, and practical applications (pp. 387–398). Berlin Heidelberg New York: Springer.Google Scholar
  15. Hommel, B., & Müsseler, J. (2005). Action-feature integration blinds to feature-overlapping perceptual events: Evidence from manual and vocal actions. Quarterly Journal of Experimental Psychology (A). In pressGoogle Scholar
  16. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878.PubMedCrossRefGoogle Scholar
  17. Hommel, B., & Schneider, W. X. (2002). Visual attention and manual response selection: Distinct mechanisms operating on the same codes. Visual Cognition, 9, 392–420.CrossRefGoogle Scholar
  18. Hoshi, E., & Tanji, J. (2002). Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. Journal of Neurophysiology, 87, 1123–1128.PubMedGoogle Scholar
  19. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97, 253–270.CrossRefPubMedGoogle Scholar
  20. Lupiáñez, J., Ruz, M., Funes, M. J., & Milliken, B. (2005). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, this volume.Google Scholar
  21. Milliken, B., & Lupiáñez, J. (2005). Repetition costs in word identification: Evaluating a stimulus–response integration account. Psychological Research, this volume.Google Scholar
  22. Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035.CrossRefPubMedGoogle Scholar
  23. Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78, 2226–2230PubMedGoogle Scholar
  24. Müsseler, J., & Hommel, B. (1997). Blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 23, 861–872.CrossRefPubMedGoogle Scholar
  25. Oriet, C., Stevanovski, B., & Jolicoeur, P. (2005). Feature binding and episodic retrieval in blindness for congruent stimuli: Evidence from analyses of sequential congruency. Psychological Research, this volume.Google Scholar
  26. Pickering, S. E., Gathercole, M., Hall, S. A., & Lloyd, S. A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. Quarterly Journal of Experimental Psychology, 54A, 397–420.CrossRefPubMedGoogle Scholar
  27. Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann, & W. Prinz (Eds.), Relationships between perception and action (pp. 167–201). Berlin Heidelberg New York: Springer.Google Scholar
  28. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
  29. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491–507.CrossRefGoogle Scholar
  30. Rizzolatti, G., & Fadiga, L. (1998). Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). Novartis Foundation Symposion, 218, 81–95.CrossRefGoogle Scholar
  31. Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. In C. A. Umiltà, & M. Moscovitch (Eds.), Attention and performance, XV. Conscious and nonconscious information processing (pp. 231–265), Cambridge: MIT Press.Google Scholar
  32. Schubotz, R. I., & von Cramon, D. Y. (2001). Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Cognitive Brain Research, 11, 97–112.CrossRefPubMedGoogle Scholar
  33. Schubotz, R. I., & von Cramon, D. Y. (2002). Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: An fMRI study. Neuroimage, 15, 787–796.CrossRefPubMedGoogle Scholar
  34. Schubotz, R. I., & von Cramon, D. Y. (2003). Functional-anatomical concepts of human premotor cortex: Evidence from fMRI and PET studies. Neuroimage, 20, S120–S131.CrossRefPubMedGoogle Scholar
  35. Schubotz, R. I., & von Cramon, D. Y. (2004a). Brains have emulators with brains: Emulation economized. Behavioral and Brain Sciences, 27, 414–415.CrossRefGoogle Scholar
  36. Schubotz, R. I., & von Cramon, D. Y. (2004b). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24, 5467–5474.CrossRefPubMedGoogle Scholar
  37. Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage, 11, 1–12.CrossRefPubMedGoogle Scholar
  38. Shima, K., & Tanji, J. (2000). Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology, 84, 2148–2160.PubMedGoogle Scholar
  39. Stoet, G., & Hommel, B. (1999). Action planning and the temporal binding of response codes. Journal of Experimental Psychology: Human Perception and Performance, 25, 1625–1640.CrossRefGoogle Scholar
  40. Tipper, S. P., Howard, L. A., & Houghton, G. (1999). Action-based mechanisms of attention. In G. W. Humphreys, J. Duncan, & A. Treisman (Eds.). Attention, space and action (pp. 231–247). Oxford: University Press.Google Scholar
  41. Ward, R. (2002). Independence and integration of perception and action: An introduction. Visual Cognition, 9, 385–391.CrossRefGoogle Scholar
  42. Wenke, D., Gaschler, R., & Nattkemper, D. (2005). Instruction-induced feature binding. Psychological Research, this volume.Google Scholar
  43. Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925–930.CrossRefPubMedGoogle Scholar
  44. Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sabrina Fagioli
    • 1
    • 2
  • Bernhard Hommel
    • 2
    Email author
  • Ricarda Ines Schubotz
    • 3
  1. 1.Department of Psychology, Cognitive Ergonomics LaboratoryUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Psychology, Cognitive Psychology UnitLeiden UniversityLeidenThe Netherlands
  3. 3.Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations