Advertisement

Psychological Research

, Volume 70, Issue 2, pp 103–116 | Cite as

Visual search for a motion singleton among coherently moving distractors

  • Ulrich AnsorgeEmail author
  • Ingrid Scharlau
  • Kirsten Labudda
Original Article

Abstract

In the current study, we tested whether search for a visual motion singleton presented among several coherently moving distractors can be more efficient than search for a motion stimulus presented with a single distractor. Under a variety of conditions, multiple spatially distributed and coherently moving distractors facilitated search for a uniquely moving target relative to a single-motion-distractor condition (Experiments 1, 3, and 4). Color coherencies among static distractors were not equally effective (Experiments 1 and 2). These results confirm that humans are highly sensitive to antagonistically directed motion signals in backgrounds compared with spatially more confined regions of visual images.

Keywords

Incongruent Condition Congruent Condition Distractor Condition Motion Block Color Singleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Supported by Deutsche Forschungsgemeinschaft Grant NE 366/6–2 to Odmar Neumann. We thank Herbert Heuer, Hermann Müller, Odmar Neumann, and an anonymous reviewer for insightful comments on earlier drafts of the current manuscript, Eva Böcker for assistance in conducting the experiments, and Heike Hartwig-Jakobs for help with the final preparation of the manuscript.

References

  1. Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29, 937–948.CrossRefPubMedGoogle Scholar
  2. Ansorge, U., & Heumann, M. (2004). Peripheral cuing by abrupt-onset cues: The role of color in S-R corresponding conditions. Acta Psychologica, 116, 115–132.CrossRefPubMedGoogle Scholar
  3. Ansorge, U., Scharlau, I., & Kälberer H. (2003). Research on induced motion. Retrieved August 4, 2003, from http://www.uni-bielefeld.de/psychologie/ae/Ae01/forschung/indumo.html.Google Scholar
  4. Aschersleben, G., & Müsseler, J. (1999). Dissociations in the timing of stationary and moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 25, 1709–1720.CrossRefGoogle Scholar
  5. Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496.Google Scholar
  6. Berezovskii, V. K., & Born, R. T. (2000). Specificity of projections from wide-field and local motion-processing regions within the middle temporal visual area of the owl monkey. The Journal of Neuroscience, 20, 1157–1169.PubMedGoogle Scholar
  7. Born, R. T. (2000). Center-surround interactions in the middle temporal visual area of the owl monkey. Journal of Neurophysiology, 84, 2658–2669.PubMedGoogle Scholar
  8. Born, R. T., & Tootell, R. B. H. (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature, 232, 127–130.Google Scholar
  9. Braddick, O. (1993). Segmentation vs. integration in visual motion processing. Trends in NeuroSciences, 16, 263–268.CrossRefPubMedGoogle Scholar
  10. Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual search tasks. Perception & Psychophysics, 51, 465–472.Google Scholar
  11. Burr, D. C., Morrone, M. C., & Vaina, L. M. (1998). Large receptive fields for optic flow detection in humans. Vision Research, 38, 1731–1743.CrossRefPubMedGoogle Scholar
  12. Duchon, A. P., & Warren, W. H. (2002). A visual equalization strategy for locomotor control: Of honeybees, robots, and humans. Psychological Science, 13, 272–278.CrossRefPubMedGoogle Scholar
  13. Duffy, C. J., & Wurtz, R. H. (1993). An illusory transformation of optic flow fields. Vision Research, 33, 1481–1490.CrossRefPubMedGoogle Scholar
  14. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.CrossRefPubMedGoogle Scholar
  15. Duncker, K. (1929). Über induzierte Bewegung [On induced motion]. Psychologische Forschung, 12, 180–259.Google Scholar
  16. Egelhaaf, M., Kern, R., Krapp, H. G., Kretzberg, J., Kurtz, R., & Warzecha, A.-K. (2002). Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences, 25, 96–102.CrossRefPubMedGoogle Scholar
  17. Enns, J. T., & Rensink, R. A. (1990). Scene based properties influence visual search. Science, 247, 721–723.PubMedGoogle Scholar
  18. Eriksen, C. W. (1953). Object location in a complex perceptual field. Journal of Experimental Psychology, 45, 126–132.PubMedGoogle Scholar
  19. Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25, 249–263.Google Scholar
  20. Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858.CrossRefPubMedGoogle Scholar
  21. Folk, C. L., Remington, R., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and colour. Journal of Experimental Psychology: Human Perception and Performance, 20, 317–329.CrossRefPubMedGoogle Scholar
  22. Fournier, L. R., & Eriksen, C. W. (1990). Coactivation in the perception of redundant targets. Journal of Experimental Psychology: Human Perception and Performance, 16, 538–550.CrossRefPubMedGoogle Scholar
  23. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
  24. Green, B. F., & Anderson, L. K. (1956). Color coding in a visual-search task. Journal of Experimental Psychology, 51, 19–24.PubMedGoogle Scholar
  25. Hays, W. L. (1988). Statistics (4th edition). Orlando, FL: Holt, Rinehart, & Winston.Google Scholar
  26. Hochstein S., & Ahissar M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804.CrossRefPubMedGoogle Scholar
  27. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance IX (pp. 187–203). Hillsdale, NJ: Erlbaum.Google Scholar
  28. Krummenacher, J., Müller, H. J., & Heller, D. (2002a). Visual search for dimensionally redundant pop-out targets: Parallel-coactive processing of dimensions is location specific. Journal of Experimental Psychology: Human Perception and Performance, 28, 1303–1323.Google Scholar
  29. Krummenacher, J., Müller, H. J., & Heller, D. (2002b). Visual search for dimensionally redundant pop-out targets: Redundancy gains in compound tasks. Visual Cognition, 9, 801–837.Google Scholar
  30. Külpe, O. (1904). Versuche über Abstraktion [Experiments on abstraction]. In F. Schumann (Ed.), Bericht über den Kongreß für experimentelle Psychologie, 1./2. (pp. 56–67). Leipzig, Germany: Barth.Google Scholar
  31. Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. Journal of Experimental Psychology: Human Perception and Performance, 25, 1003–1020.CrossRefGoogle Scholar
  32. McLeod, P., Driver, J., Dienes, Z., & Crisp, J. (1991). Filtering by movement in visual search. Journal of Experimental Psychology: Human Perception and Performance, 17, 55–64.CrossRefPubMedGoogle Scholar
  33. Meese, T. S., Smith, V., & Harris, M. G. (1995). Induced motion may account for the illusory transformation of optic flow fields found by Duffy and Wurtz. Vision Research, 35, 981–984.CrossRefPubMedGoogle Scholar
  34. Morrone, M. C., Burr, D. C., & Vaina, L. M. (1995). Two stages of visual processing for radial and circular motion. Nature, 376, 507–509.CrossRefPubMedGoogle Scholar
  35. Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Froehlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683–695.Google Scholar
  36. Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Froehlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120–138.CrossRefGoogle Scholar
  37. Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320, 264–265.PubMedGoogle Scholar
  38. Nothdurft, H.-C. (1991). Texture segmentation and pop-out from orientation contrast. Vision Research, 31, 1073–1078.CrossRefPubMedGoogle Scholar
  39. Pollmann, S., Weidner, R., Müller, H. J., & von Cramon, D. Y. (2000). A fronto-posterior network involved in visual dimension changes. Journal of Cognitive Neuroscience, 12, 480–494.CrossRefPubMedGoogle Scholar
  40. Rolls, E. T., Aggelopoulos, N. C., & Zheng, F. (2003). The receptive fields of inferior temporal cortex neurons in natural scenes. The Journal of Neuroscience, 23, 339–348.PubMedGoogle Scholar
  41. Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience, 6, 134–144.PubMedGoogle Scholar
  42. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606.Google Scholar
  43. Theeuwes, J. (1994a). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799–806.Google Scholar
  44. Theeuwes, J. (1994b). The effects of location cuing on redundant-target processing. Psychological Research/Psychologische Forschung, 57, 15–19.Google Scholar
  45. Theeuwes, J., & Burger, R. (1998). Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24, 1342–1353.CrossRefPubMedGoogle Scholar
  46. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedGoogle Scholar
  47. Von Mühlenen, A., & Müller, H. J. (1999). Visual search for conjunctions of motion and form: Selective attention to movement direction. Journal of General Psychology, 126, 289–317.Google Scholar
  48. Von Mühlenen, A., & Müller, H. J. (2001). Visual search for motion-form conjunctions: Is form discriminated within the motion system? Journal of Experimental Psychology: Human Perception and Performance, 27, 707–718.CrossRefPubMedGoogle Scholar
  49. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238.Google Scholar
  50. Wolfe, J. M. (1998). Extending guided search: Why guided search needs a preattentive “item map.” In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 247–270). Washington, D.C.: American Psychological Association.Google Scholar
  51. Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Sciences, 7, 70–76.CrossRefPubMedGoogle Scholar
  52. Wolfe, J. M., Yu, K. P., Stewart, M. I., Shorter, A. D., Friedman-Hill, S. R., & Cave, K. R. (1990). Limitations on the parallel guidance of visual search: Color × Color and Orientation × Orientation conjunctions. Journal of Experimental Psychology: Human Perception and Performance, 16, 879–892.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ulrich Ansorge
    • 1
    Email author
  • Ingrid Scharlau
    • 1
  • Kirsten Labudda
    • 1
  1. 1.Department of PsychologyBielefeld UniversityBielefeldGermany

Personalised recommendations