Psychological Research

, Volume 67, Issue 4, pp 233–239 | Cite as

Asynchronous perception of motion and luminance change

  • Dirk KerzelEmail author
Original Article


Observers were asked to indicate when a target moving on a circular trajectory changed its luminance. The judged position of the luminance change was displaced from the true position in the direction of motion, indicating differences between the times-to-consciousness of motion and luminance change. Motion was processed faster than luminance change. The latency difference was more pronounced for a small (116–134 ms) than for a large luminance decrement (37 ms). The results show that first-order motion is perceived before an accurate representation of luminance is available. These findings are consistent with current accounts of the flash-lag effect. Two control experiments ruled out that the results were due to a general forward tendency. Localization of the target when an auditory signal was presented did not produce forward displacement, and the judged onset of motion was not shifted in the direction of motion.


Position Judgments Consciousness Luminance Motion Modular Perception Flash-lag effect 



I wish to thank B. Hommel, J. Müsseler and S. Stork for valuable suggestions on the manuscript and S. Bauer and M. Tirú for helping to collect the data.


  1. Aschersleben, G., & Müsseler, J. (1999). Dissociations in the timing of stationary and moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1709–1720.Google Scholar
  2. Braddick, O. J. (1980). Low-level and high-level processes in apparent motion. Proceedings of the Royal Society of London Series B-Biological Science, 290(1038), 137–151.Google Scholar
  3. Brenner, E., Smeets, J. B., & van den Berg, A. V. (2001). Smooth eye movements and spatial localisation. Vision Research, 41(17), 2253–2259.Google Scholar
  4. Burkhardt, D. A., Gottesman, J., & Keenan, R. M. (1987). Sensory latency and reaction time: dependence on contrast polarity and early linearity in human vision. Journal of the Optical Society of America [A], 4(3), 530–539.Google Scholar
  5. Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spatial Vision, 4(2–3), 103–129.Google Scholar
  6. DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience, 11(5), 219–226.Google Scholar
  7. Dubner, R., & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35(2), 528–532.Google Scholar
  8. Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science, 287(5460), 2036–2038.Google Scholar
  9. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.Google Scholar
  10. Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427–438.Google Scholar
  11. Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. [On the measurement of sensation time]. Zeitschrift für Sinnesphysiologie, 54, 58–78.Google Scholar
  12. Hazelhoff, F. F., & Wiersma, H. (1924). Die Wahrnehmungszeit. Erster Artikel: Die Bestimmung der Schnelligkeit der Wahrnehmung von Lichtreizen nach der Lokalisationsmethode. [The time to perception: First article: The determination of the speed of perception of light stimuli with the localization method]. Zeitschrift für Psychologie, 96, 171–188.Google Scholar
  13. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715.Google Scholar
  14. Kerzel, D. (2002a). Different localization of motion onset with pointing and relative judgements. Experimental Brain Research, 145(3), 340–350.Google Scholar
  15. Kerzel, D. (2002b). Memory for the position of stationary objects: Disentangling foveal bias and memory averaging. Vision Research, 42(2), 159–167.Google Scholar
  16. Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 829–840.Google Scholar
  17. Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Research, 42(2), 181–189.Google Scholar
  18. Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Research, 39, 3702–3709.Google Scholar
  19. Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends in Neurosciences, 24(6), 335–339.Google Scholar
  20. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–749.Google Scholar
  21. Lu, Z. L., & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35(19), 2697–2722.Google Scholar
  22. Mateeff, S., & Hohnsbein, J. (1989). The role of the adjacency between background cues and objects in visual localization during ocular pursuit. Perception, 18(1), 93–104.Google Scholar
  23. Mateeff, S., Yakimoff, N., & Dimitrov, G. (1981). Localization of brief visual stimuli during pursuit eye movements. Acta Psychologica, 48(1–3), 133–140.Google Scholar
  24. Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402.Google Scholar
  25. Moutoussis, K., & Zeki, S. (1997). Functional segregation and temporal hierarchy of the visual perceptive systems. Proceedings of the Royal Society of London Series B-Biological Science, 264(1387), 1407–1414.Google Scholar
  26. Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Frohlich effect and an attention-shifting explanation. Perception & Psychophysics, 60(4), 683–695.Google Scholar
  27. Neuhaus, W. (1930). Experimentelle Untersuchung der Scheinbewegung [Experimental investigations of apparent motion]. Archiv für die gesamte Psychologie, 775, 315–458.Google Scholar
  28. Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370(6487), 256–257.Google Scholar
  29. Patel, S. S., Ogmen, H., Bedell, H. E., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science, 290(5494), 1051a.Google Scholar
  30. Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254(6), 102–109.Google Scholar
  31. Roufs, J. A. J. (1963). Perception lag as a function of stimulus luminance. Vision Research, 3, 81–91.Google Scholar
  32. Thornton, I. M. (2002). The onset repulsion effect. Spatial Vision, 15(2), 219–244.Google Scholar
  33. Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nature Neuroscience, 1(8), 656–657.Google Scholar
  34. Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40(2), 137–149.Google Scholar
  35. Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature, 284(5755), 412–418.Google Scholar
  36. Zeki, S., & Bartels, A. (1998). The autonomy of the visual systems and the modularity of conscious vision. Proceedings of the Royal Society of London Series B-Biological Science, 353(1377), 1911–1914.Google Scholar
  37. Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274(5670), 423–428.Google Scholar

Copyright information

© Springer-Verlag  2003

Authors and Affiliations

  1. 1.FB 06, Psychologie und Sportwissenschaft, Abteilung Allgemeine Psychologie, Otto-Behaghel-Str. 10F, 35394 Gießen, Germany

Personalised recommendations