Advertisement

Planta

, Volume 201, Issue 3, pp 293–297 | Cite as

Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance

  • Carlos Romero
  • José M. Bellés
  • José L. Vayá
  • Ramón Serrano
  • Francisco A. Culiáñez-MaciàEmail author
Article

Abstract

The yeast trehalose-6-phosphate synthase gene (TPS1) was engineered under the control of the cauliflower mosaic virus regulatory sequences (CaMV35S) for expression in plants. Using Agrobacterium-mediated transfer, the gene was incorporated into the genomic DNA and constitutively expressed in Nicotiana tabacum L. plants. Trehalose was determined in the transformants, by anion-exchange chromatography coupled to pulsed amperometric detection. The non-reducing disaccharide accumulated up to 0.17 mg per g fresh weight in leaf extracts of transgenic plants. Trehaloseaccumulating plants exhibited multiple phenotypic alterations, including stunted growth, lancet-shaped leaves, reduced sucrose content and improved drought tolerance. These pleiotropic effects, and the fact that water loss from detached leaves was not significantly affected by trehalose accumulation, suggest that synthesis of this sugar, rather than leading to an osmoprotectant effect, had altered sugar metabolism and regulatory pathways affecting plant development and stress tolerance.

Key words

Drought tolerance Nicotiana Osmotic stress Transgenic plants Trehalose 

Abbreviations

TPS1/CIF1

gene encoding trehalose-6-phosphate synthase

CaMV

cauliflower mosaic virus

CaMV35S

cauliflower mosaic virus regulatory sequences

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell W, Klaassen P, Ohnacker M. Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIFI, a regulator of carbon catabolite inactivation. Eur J Biochem 209: 951–959PubMedCrossRefGoogle Scholar
  2. Bevan M (1984) Binary Agrobacterium vectors for plants transformation. Nucleic Acids Res 12: 8711–8721PubMedCrossRefGoogle Scholar
  3. Colaco C, Kampinga J, Roser B (1995) Amorphous stability and trehalose. Science 268: 788–788PubMedCrossRefGoogle Scholar
  4. Crowe J, Crowe L, Chapman D (1984) Preservation of membranes in anhydrobiotic organism: the role of trehalose. Science 223: 701–703PubMedCrossRefGoogle Scholar
  5. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219: 179–186PubMedCrossRefGoogle Scholar
  6. Drennan PM, Smith MT, Goldsworthy D, Van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142: 493–496Google Scholar
  7. Elbein A (1974) The metabolism of α,α-trehalose. Adv Carbohyd Chem Bi 30: 227–256CrossRefGoogle Scholar
  8. Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen R, Degraaf P, Vandun K, Delaat A, Vandenelzen P, Damm B, Pen J (1995) Transgenic tobacco plants as a model-system for the production of trehalose. Plant Physiol 108: S786Google Scholar
  9. Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plant storing starch, sucrose, and hexose sugars. Plant Physiol 99: 1443–1448PubMedCrossRefGoogle Scholar
  10. González MI, Strucka R, Blázquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIFI, a yeast gene necessary for growth on glucose. Yeast 8: 183–192PubMedCrossRefGoogle Scholar
  11. Guerineau F, Lucy A, Mullineaux P (1992) Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol Biol 18: 815–818PubMedCrossRefGoogle Scholar
  12. Herbers K, Meuwly P, Frommer WB, Métraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8: 793–803PubMedCrossRefGoogle Scholar
  13. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and Tregion of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180CrossRefGoogle Scholar
  14. Hoekstra FA, Crowe LM, Van Rockel T, Vermeer E (1992) Do phospholipids and sucrose determine membrane phase transitions in dehydrating pollen species? Plant Cell Environ 15: 601–606CrossRefGoogle Scholar
  15. Holmström K-O, Mäntylä E, Welin B, Mandai A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379: 683–684CrossRefGoogle Scholar
  16. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae. FEBS Lett 255: 5518–5522Google Scholar
  17. Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane-structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol 41: 763–769PubMedGoogle Scholar
  18. Jang J-C, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6: 1665–1679PubMedCrossRefGoogle Scholar
  19. Kishor PBK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387–1394PubMedGoogle Scholar
  20. Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeast: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134: 1661–1666PubMedGoogle Scholar
  21. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  22. Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112: 1–9CrossRefGoogle Scholar
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 15: 473–497CrossRefGoogle Scholar
  24. Rocklin RD, Pohl CA (1983) Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J Liq Chromatogr 6: 1577–1590CrossRefGoogle Scholar
  25. Serrano R (1996) Salt tolerance in plants and microorganism: toxicity, targets and defense responses. Int Rev Cytol 165: 1–52PubMedCrossRefGoogle Scholar
  26. Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 89: 2600–2604PubMedCrossRefGoogle Scholar
  27. Thevelein JM (1994) Signal transduction in yeast. Yeast 10: 1753–1790PubMedCrossRefGoogle Scholar
  28. Veluthambi K, Mahadevan S, Maheshwari R (1982) Trehalose toxicity in Cuscuta reflexa: cell wall synthesis is inhibited upon trehalose feeding. Plant Physiol 70: 686–688PubMedCrossRefGoogle Scholar
  29. Wen-jun S, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res 17: 8385–8385CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Carlos Romero
    • 1
  • José M. Bellés
    • 1
  • José L. Vayá
    • 1
  • Ramón Serrano
    • 1
  • Francisco A. Culiáñez-Macià
    • 1
    Email author
  1. 1.Instituto de Biología Molecular y Celular de PlantasUniversidad Politécnica de Valencia C.S.I.C.ValenciaSpain

Personalised recommendations