Planta

, Volume 212, Issue 2, pp 184–189

Gravitropic microtubule reorientation can be uncoupled from growth

  • Regina Himmelspach
  • Peter Nick

Abstract.

The causal relationship between gravitropic growth responses and microtubule reorientation has been studied. Growth and microtubule reorientation have been uncoupled during the gravitropic response of maize (Zea mays L.) coleoptiles. Microtubule orientation and growth were measured under three different conditions: (i) a gravitropic stimulation where the growth response was allowed to be expressed (intact seedlings were displaced from the vertical position by 90°), (ii) a gravitropic stimulation where the growth response was suppressed (coleoptiles were attached to microscope slides and kept in a horizontal position), (iii) suppression of growth in the absence of gravitropic stimulation (coleoptiles were attached to microscope slides and kept in a vertical position). It was found that (i) gravitropic stimulation can induce a microtubular reorientation from transverse to longitudinal in the upper (slower growing) flank of the coleoptile, and an inhibition of growth; (ii) the reorientation of microtubules precedes the inhibition of growth; (iii) the gravitropic response of microtubules is weaker, not elevated, when the inhibition of growth is artificially enhanced by attaching the coleoptiles to a slide; and (iv) artificial inhibition of growth in the absence of gravitropic stimulation cannot induce a microtubular response. Thus, the extent of microtubule reorientation is not correlated with the extent of growth inhibition. Moreover, these findings demonstrate that microtubules do not reorient passively after growth changes, but actively in response to gravitropic stimulation.

Key words: Coleoptile (gravitropism growth) Gravitropism Growth (coleoptile) Microtubule reorientation Zea (gravitropism) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Regina Himmelspach
    • 1
  • Peter Nick
    • 1
  1. 1.Institut für Biologie II, Schänzlestr.1, 79104 Freiburg, GermanyDE

Personalised recommendations