Skip to main content
Log in

Cryopreservation of carnation (Dianthus caryophyllus L.) and other Dianthus species

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This paper reviews the cryopreservation of the ornamental, carnation (Dianthus caryophyllus L.), as an important method for the long-term preservation of this plant’s germplasm.

Abstract

Carnation (Dianthus caryophyllus L.) is an important ornamental plant that is used as a potted plant as well as a cut flower. Important Dianthus germplasm would benefit from long-term strategies such as cryopreservation. Unlike the in vitro tissue culture literature of this ornamental, which has been studied in considerable detail, and with several genetic transformation protocols, surprisingly, the literature on its cryopreservation is still fairly scant, with barely two dozen or so studies, mostly having employed shoot tips. Early (< 2007) and more recent (2007–2020) cryopreservation techniques for carnation, including ultra-rapid cooling, encapsulation-vitrification, and encapsulation-dehydration, efficiently replaced programmed slow cooling processes used in early studies in the 1980s. Two large gaps (1997–2006, and 2016–2020) in which no carnation cryopreservation studies were published, requires future studies to cover new knowledge to fill gaps in information. Carnation cryopreservation research would benefit from testing a wide range of in vitro explants, new techniques such as the cryo-mesh, improved regeneration protocols for post-cryopreserved material, and the use of low-temperature storage as a mid- to long-term complementary germplasm storage strategy. This mini-review provides details of what has been achieved thus far and future objectives that could fortify cryopreservation research of this ornamental, as well as provide a robust long-term germplasm repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although “BAP” was used to abbreviate benzylaminopurine, we have adopted the abbreviation for benzyladenine, BA, as per Teixeira da Silva (2012).

References

  • Anderson JO (1979) Cryopreservation of apical meristems and cells of carnation (Dianthus caryophyllus). Cryobiology 16:583. https://doi.org/10.1016/0011-2240(79)90079-8

    Article  Google Scholar 

  • Arda H, Dayan S, Kartal Ç, Güler N (2016) In vitro conservation of critically endangered Dianthus ingoldbyi Turrill under slow growth conditions. Trakya Univ J Nat Sci 17:47–54

    Google Scholar 

  • Australian Government (2020). Biology of Carnation—v2.1. https://bch.cbd.int/database/record.shtml?documentid=4954. Accessed 30 Sept 2020

  • Butiuc-Keul A, Suteu A, Muntean-Deliu C, Deliu C (2001) Study on the in vitro preservation of Dianthus spiculifolius Schur. Contrib Bot 36:137–143

    Google Scholar 

  • Cristea V, Puscas M, Miclaus¸ M, Deliu C, (2006) Conservative micropropagation of some endemic or Ade species from the Dianthus genus. Acta Hortic 725:357–364

    Article  CAS  Google Scholar 

  • Cristea V, Brummer AT, Jarda L, Miclaus M (2010) In vitro culture initiation and phytohormonal influence on Dianthus henteri—a Romanian endemic species. Rom Biotechnol Lett 15:25–33

    CAS  Google Scholar 

  • Datta SK, Teixeira da Silva JA (2006) Role of induced mutagenesis for development of new flower colour and type in ornamentals. In: Teixeira da Silva JA (Ed.) Floriculture, ornamental and plant biotechnology: advances and topical issues (1st Edn., Vol I), Global Science Books, Ltd., Isleworth, UK, pp. 640–645.

  • Dereuddre J, Tannoury M (1995) Cryopreservation of germplasm of carnation (Dianthus caryophyllus L.). In: Bajaj YPS (Ed.), Biotechnology in Agriculture and Forestry, vol. 32. Cryopreservation of Plant Germplasm I. Springer, Berlin New York, pp. 459–475. https://doi.org/10.1007/978-3-662-03096-7_32

  • Dereuddre J, Galerne M, Gazeau C (1987) Effets du saccharose sur la résistance à la congelation dans l’azote liquide (− 196°C) des méristèmes d’oeillet (Dianthus caryophyllus L.) cultivés in vitro. Comptes Rendus de l’Académie des Sciences, Paris 304 (III): 485–488 (in French with English abstract).

  • Dereuddre J, Fabre J, Bassaglia C (1988) Resistance to freezing in liquid nitrogen of carnation (Dianthus cryophyllus L. var Eolo) apical and axillary shoot tips from different aged in vitro plantlets. Plant Cell Rep 7:170–173. https://doi.org/10.1007/BF00269315

    Article  CAS  PubMed  Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57:227–243. https://doi.org/10.1007/BF00039669

    Article  Google Scholar 

  • Fukai S (1987) Freeze preservation of Dianthus shoot tips by program freezer. Environ Control Biol 25:25–30. https://doi.org/10.2525/ecb1963.25.25 ((in Japanese with English abstract))

    Article  Google Scholar 

  • Fukai S (1989) Plant regeneration from shoot tips of Dianthus hybrida conserved in liquid nitrogen up to 2 years. Plant Tissue Cult Lett 6:177–178. https://doi.org/10.5511/plantbiotechnology1984.6.177

    Article  Google Scholar 

  • Fukai S, Goi M, Tanaka M (1991) Cryopreservation of shoot tips of Caryophyllaceae ornamentals. Euphytica 56:149–153. https://doi.org/10.1007/BF00042058

    Article  Google Scholar 

  • Funnekotter B, Bunn E, Mancera RL (2017) Cryo-mesh: a simple alternative cryopreservation protocol. CryoLetters 38:1551–1159

    Google Scholar 

  • Halmagyi A, Deliu C (2007) Cryopreservation of carnation (Dianthus caryophyllus L.) by encapsulation-vitrification. Sci Hortic 113:300–306. https://doi.org/10.1016/j.scienta.2007.04.002

    Article  CAS  Google Scholar 

  • Halmagyi A, Lambardi M (2006) Cryopreservation of carnation (Dianthus caryophyllus L.). In: Teixeira da Silva JA (Ed) Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Edn.; Vol. II), Global Science Books Inc., Isleworth, UK, pp. 415–423.

  • Halmagyi A, Coste A, Jarda L (2020) A safeguard measure of endemic and endangered plant species: cryostorage of Dianthus taxa. Biodivers Conserv 29:3445–3460. https://doi.org/10.1007/s10531-020-02032-3

    Article  Google Scholar 

  • Holobiuc I, Paunescu A, Blındu R (2007) Ex situ conservation using in vitro methods in someCaryophyllaceae plant species from Red List of vascular plants in Romania. Rom J Biol Plant Biol 49–50:3–16

    Google Scholar 

  • Holobiuc I, Blındu R, Cristea V (2009) Researches concerning in vitro conservation of the rare plant species Dianthus nardiformis Janka. Biotechnol Biotechnol Equip 23:221–224

    Article  Google Scholar 

  • Holobiuc I, Catana R, Voichita C, Helepciuc F (2013) In vitro introduction of Dianthus trifasciculatus Kit ssp. parviflorus as ex situ preservation method. Muzeul Olteniei Craiova. Studii si Comunicari Stiintele Naturii Tom 29:93–100

    Google Scholar 

  • Jarda L, Cristea V, Halmagyi A, Palada M (2011) In vitro culture initiation and cryopreservation of endemic taxa Dianthus giganteus ssp. banaticus. Acta Hortic 918:153–159. https://doi.org/10.17660/ActaHortic.2011.918.18

    Article  CAS  Google Scholar 

  • Jarda L, Butiuk-Keul A, Höhn M, Pedryc A, Cristea V (2014) Ex situ conservation of Dianthus giganteus d’Urv. subsp. banaticus (Heuff.) Tutin by in vitro culture and assessment of somaclonal variability by molecular markers. Turkish J Biol 38:21–30. https://doi.org/10.3906/biy-1303-20

    Article  Google Scholar 

  • Keller ER, Kaczmarczyk A, Senula A (2008) Cryopreservation for plant genebanks—a matter between high expectations and cautious reservation. CryoLetters 29:53–62

    Google Scholar 

  • Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species—a review. Sci Hortic 168:88–107. https://doi.org/10.1016/j.scienta.2014.01.014

    Article  Google Scholar 

  • Luyet BJ (1937) The vitrification of organic colloids and of protoplasm. Biodynamica 1:1–14

    Google Scholar 

  • Mehlquist GAL, Ober D, Sagawa Y (1954) Somatic mutations in the carnation, Dianthus caryophyllus L. Proc Natl Acad Sci USA 40:432–436

    Article  CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73. https://doi.org/10.1016/0168-9452(93)90189-7

    Article  CAS  Google Scholar 

  • Plants of the World (2020) Dianthus L. https://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:6245-1#children. Accessed: 30 Sept 2020

  • Reed BM (2008) Cryopreservation—practical considerations. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Chapter  Google Scholar 

  • Sakai S, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33. https://doi.org/10.1007/BF00232130

    Article  CAS  PubMed  Google Scholar 

  • Seibert M (1976) Shoot initiation from carnation shoot apices frozen to − 196 °C. Science 191(4232):1178–1179. https://doi.org/10.1126/science.191.4232.1178

    Article  CAS  PubMed  Google Scholar 

  • Seibert M, Wetherbee PJ (1977) Increased survival and differentiation of frozen herbaceous plant organ cultures through cold treatment. Plant Physiol 59:1043–1046. https://doi.org/10.1104/pp.59.6.1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekizawa K, Yamamoto SI, Rafique T, Fukui K, Niino T (2011) Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using cryo-plates. Plant Biotechnol 28:401–405. https://doi.org/10.5511/plantbiotechnology.11.0531a

    Article  Google Scholar 

  • Tannoury M (1993). Cryoconservation d’apex d’œillet (Dianthus caryophyllus L.) et d’embryons somatiques de carotte (Daucus carota L.) par les procédés d’enrobage-déshydratation et d’enrobage-vitrification. PhD Thesis, University Pierre & Marie Curie (Paris VI).

  • Tannoury M, Vintéjoux C (1997) Études cytologiques de bourgeons d’œillet (Dianthus caryphyllus L.) après cryoconservation. Acta Bot Gall 144:107–118. https://doi.org/10.1080/12538078.1997.10515758 ((in French with English abstract))

    Article  Google Scholar 

  • Tannoury M, Ralambosoa J, Kaminski M, Dereuddre J (1991) Cryoconservation par vitrification d’apex enrobés d’œillet (Dianthus caryophyllus L.) cultivé in vitro. Comptes Rendus de l’Académie des Sciences, Paris 313 (III):633–638 (in French with English abstract).

  • Tannoury M, Vintéjoux C, Dereuddre J (1995) Cryoconservation par encapsulation et déshydrtation d’apex d’œillet (Dianthus caryphyllus L.) cultivés in vitro. Acta Bot Gall 142:415–424. https://doi.org/10.1080/12538078.1995.10515266 ((in French with English abstract))

    Article  Google Scholar 

  • Teixeira da Silva JA (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv 21:715–766. https://doi.org/10.1016/S0734-9750(03)00117-4

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA (2012) Is BA (6-benzyladenine) BAP (6-benzylaminopurine)? Asian Australasian J Plant Sci Biotechnol 6(special issue 1):121–124.

  • Teixeira da Silva JA (2014a) Callus induction from 15 carnation (Dianthus caryophyllus L.) cultivars. J Plant Develop 21:15–21

    Google Scholar 

  • Teixeira da Silva JA (2014b) Attempted genotype-independent induction of shoots in 15 carnation (Dianthus caryophyllus L.) cultivars from four explant types. Environ Exp Biol 12:143–147

    Google Scholar 

  • Teixeira da Silva JA, Kim H-Y, Engelmann F (2015) Chrysanthemum low-temperature storage, cryopreservation and synseed technology. Plant Cell Tiss Org Cult 120:423–440. https://doi.org/10.1007/s11240-014-0641-y

    Article  CAS  Google Scholar 

  • Uemura M, Sakai A (1980) Survival of carnation (Dianthus caryophyllus L.) shoot apices frozen to the temperature of liquid nitrogen. Plant Cell Physiol 21:85–94. https://doi.org/10.1093/oxfordjournals.pcp.a075993

    Article  CAS  Google Scholar 

  • Wang M, Lambardi M, Engelmann F, Pathirana R, Panis B, Volk GM, Wang Q-C (2020) Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell Tiss Organ Cult (in press). https://doi.org/10.1007/s11240-020-01770-0

    Article  Google Scholar 

  • Yamamoto SI, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 32:256–265

    CAS  PubMed  Google Scholar 

  • Zhang J-M, Zhang X-N, Lu X-X, Xin X, Yin G-K, He J-J, Xu Y-M, Chen X-L (2014) Optimization of droplet-vitrification protocol for carnation genotypes and ultrastructural studies on shoot tips during cryopreservation. Acta Physiol Plant 36:3189–3198. https://doi.org/10.1007/s11738-014-1685-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Reza Raihandhany (Division of Botany, Genbinesia Foundation, Indonesia) for assistance with discovery pertaining to the Dianthus species list.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime A. Teixeira da Silva, Adhityo Wicaksono or Florent Engelmann.

Ethics declarations

Conflict of interest

The authors declare no commercial or other conflicts of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira da Silva, J.A., Wicaksono, A. & Engelmann, F. Cryopreservation of carnation (Dianthus caryophyllus L.) and other Dianthus species. Planta 252, 105 (2020). https://doi.org/10.1007/s00425-020-03510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03510-2

Keywords

Navigation