Advertisement

Planta

, 251:53 | Cite as

Generation of fruit postharvest gene datasets and a novel motif analysis tool for functional studies: uncovering links between peach fruit heat treatment and cold storage responses

  • Mauro GismondiEmail author
  • Lucas D. Daurelio
  • Claudia Maiorano
  • Laura L. Monti
  • Maria V. Lara
  • Maria F. Drincovich
  • Claudia A. BustamanteEmail author
Original Article

Abstract

Main Conclusion

A survey of developed fruit gene-specific datasets and the implementation of a novel cis-element analysis tool indicate specific transcription factors as novel regulatory actors under HT response and CI protection.

Abstract

Heat treatment (HT) prior to cold storage (CS) has been successfully applied to ameliorate fruit chilling injury (CI) disorders. Molecular studies have identified several HT-driven benefits and putative CI-protective molecules and mechanisms. However, bioinformatic tools and analyses able to integrate fruit-specific information are necessary to begin functional studies and breeding projects. In this work, a HT-responsive gene dataset (HTds) and four fruit expression datasets (FEds), containing gene-specific information from several species and postharvest conditions, were developed and characterized. FEds provided information about HT-responsive genes, not only validating their sensitivity to HT in different systems but also revealing most of them as CS-responsive. A special focus was given to peach heat treatment-sensitive transcriptional regulation by the development of a novel Perl motif analysis software (cisAnalyzer) and a curated plant cis-elements dataset (PASPds). cisAnalyzer is able to assess sequence motifs presence, localization, enrichment and discovery on biological sequences. Its implementation for the enrichment analysis of PASPds motifs on the promoters of HTds genes rendered particular cis-elements that indicate certain transcription factor (TF) families as responsible of fruit HT-sensitive transcription regulation. Phylogenetic and postharvest expression data of these TFs showed a functional diversity of TF families, with members able to fulfil roles under HT, CS and/or both treatments. All integrated datasets and cisAnalyzer tool were deposited in FruitGeneDB (https://www.cefobi-conicet.gov.ar/FruitGeneDB/search1.php), a new available database with a great potential for fruit gene functional studies, including the markers of HT and CS responses whose study will contribute to unravel HT-driven CI-protection and select tolerant cultivars.

Keywords

Chilling injury cisAnalyzer Database Dataset Heat treatment Prunus persica Transcriptional regulation 

Abbreviations

CI

Chilling injury

CS

Cold storage

FEds

Fruit expression datasets

HT

Heat treatment

HTds

Heat treatment-responsive gene dataset

TF

Transcription factor

Notes

Acknowledgements

LDD, MFD, MVL, and CAB are members of the Researcher Career of CONICET. LLM, CM and MG are fellows of the same institution. Financial support was provided by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Agencia Nacional de Promoción de Actividades Científicas y Técnicas (ANPCyT, Argentina). The authors thank Dr. Luis Esteban for his suggestions during early stages of cisAnalyzer design.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2020_3340_MOESM1_ESM.tif (36.2 mb)
Supplementary Fig. S1 Overview of the main biological processes that contain HT-induced or repressed determinants. A. thaliana orthologues of HT-induced (white) or repressed (black) genes were used. MapMan pathway annotations (A) as well as biological process, molecular function and cellular component GO terms entities (B) are depicted in y-axis while the number of genes is shown as scale bars in x-axis. Genes binned to each pathway or term are available in FeaturesIII (Supplementary Table S8). AgriGO web server allowed performing a Singular Enrichment Analysis (SEA) against A. thaliana genome frequencies, and enriched GO terms are indicated with asterisks (FDR ≤ 0.05). TCA, TriCarboxylic Acid; CHO, Carbohydrates (TIF 37090 kb)
425_2020_3340_MOESM2_ESM.tif (4 mb)
Supplementary Fig. S2 Description of the current knowledge about HTds HT-responsive genes and orthologues. Showed information was extracted from FEds datasets. ds, dataset; HT, Heat Treatment (TIF 4047 kb)
425_2020_3340_MOESM3_ESM.tif (14.1 mb)
Supplementary Fig. S3 Overview of main steps for cisAnalyzer implementation. Supplementary file cisAnalyzer.zip contains the especial directories structure that allows cisAnalyzer functioning. Start_cisAnalyzer.pl execution in a unix/linux terminal allows the user to browse and choose among the different program capabilities (Supplementary Table S12) and to input targets obtained from Phytozome BioMart tool and custom motif files (when needed). Next, the Perl program controls’ sequences and motifs quality, reporting any inconvenience. Once Start_cisAnalyzer.pl ending, Run_cisAnalyzer.pl execution comprises each motif search on each target of the set, processing subroutines and outputs generation at /MyOuputFiles. Results are reported in classical motifs and target tables but a following exhaustive sub-processing of these data renders tabular and graphical non-classical outputs (TIF 14436 kb)
425_2020_3340_MOESM4_ESM.xls (214 kb)
Supplementary file4 (XLS 214 kb)
425_2020_3340_MOESM5_ESM.xls (2.3 mb)
Supplementary file5 (XLS 2311 kb)
425_2020_3340_MOESM6_ESM.xls (1.3 mb)
Supplementary file6 (XLS 1377 kb)
425_2020_3340_MOESM7_ESM.xls (3.6 mb)
Supplementary file7 (XLS 3636 kb)
425_2020_3340_MOESM8_ESM.xls (2.2 mb)
Supplementary file8 (XLS 2286 kb)
425_2020_3340_MOESM9_ESM.xls (287 kb)
Supplementary file9 (XLS 287 kb)
425_2020_3340_MOESM10_ESM.xls (391 kb)
Supplementary file10 (XLS 391 kb)
425_2020_3340_MOESM11_ESM.xls (334 kb)
Supplementary file11 (XLS 334 kb)
425_2020_3340_MOESM12_ESM.xls (106 kb)
Supplementary file12 (XLS 106 kb)
425_2020_3340_MOESM13_ESM.xls (298 kb)
Supplementary file13 (XLS 298 kb)
425_2020_3340_MOESM14_ESM.xls (102 kb)
Supplementary file14 (XLS 102 kb)
425_2020_3340_MOESM15_ESM.doc (74 kb)
Supplementary file15 (DOC 74 kb)
425_2020_3340_MOESM16_ESM.doc (98 kb)
Supplementary file16 (DOC 97 kb)
425_2020_3340_MOESM17_ESM.doc (101 kb)
Supplementary file17 (DOC 101 kb)

References

  1. Abo-Ogiala A, Carsjens C, Diekmann H et al (2014) Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J Plant Physiol 171:250–259.  https://doi.org/10.1016/j.jplph.2013.08.003 CrossRefPubMedGoogle Scholar
  2. Agarwal M, Hao Y, Kapoor A et al (2006a) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645.  https://doi.org/10.1074/jbc.M605895200 CrossRefPubMedGoogle Scholar
  3. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006b) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274.  https://doi.org/10.1007/s00299-006-0204-8 CrossRefPubMedGoogle Scholar
  4. Artlip TS, Wisniewski ME, Bassett CL, Norelli JL (2013) CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiol 33:866–877.  https://doi.org/10.1093/treephys/tpt056 CrossRefPubMedGoogle Scholar
  5. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:W39–W49.  https://doi.org/10.1093/nar/gkv416 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benedict C, Geisler M, Trygg J et al (2006) Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol 141:1219–1232.  https://doi.org/10.1104/pp.106.083527 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bolt S, Zuther E, Zintl S et al (2017) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120.  https://doi.org/10.1111/pce.12838 CrossRefPubMedGoogle Scholar
  8. Boyce JM, Knight H, Deyholos M et al (2003) The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant J 34:395–406.  https://doi.org/10.1046/j.1365-313X.2003.01734.x CrossRefPubMedGoogle Scholar
  9. Brizzolara S, Hertog M, Tosetti R et al (2018) Metabolic responses to low temperature of three peach fruit cultivars differently sensitive to cold storage. Front Plant Sci 9:706.  https://doi.org/10.3389/fpls.2018.00706 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brkljacic J, Grotewold E (2017) Combinatorial control of plant gene expression. Biochim Biophys Acta Gene Regul Mech 1860:31–40.  https://doi.org/10.1016/j.bbagrm.2016.07.005 CrossRefPubMedGoogle Scholar
  11. Bustamante CA, Budde CO, Borsani J et al (2012) Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins. Plant Physiol Biochem 60:35–45.  https://doi.org/10.1016/j.plaphy.2012.07.021 CrossRefPubMedGoogle Scholar
  12. Bustamante CA, Monti LL, Gabilondo J et al (2016) Differential metabolic rearrangements after cold storage are correlated with chilling injury resistance of peach fruits. Front Plant Sci 7:1478.  https://doi.org/10.3389/fpls.2016.01478 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bustamante CA, Brotman Y, Monti LL et al (2018) Differential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury. Physiol Plant 163:2–17.  https://doi.org/10.1111/ppl.12665 CrossRefPubMedGoogle Scholar
  14. Cao S, Shao J, Shi L et al (2018) Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Sci Rep 8:806.  https://doi.org/10.1038/s41598-018-19363-5 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen M, Tan Q, Sun M et al (2016) Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol Genet Genomics 291:1319–1332.  https://doi.org/10.1007/s00438-016-1171-6 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng M-C, Liao P-M, Kuo W-W, Lin T-P (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582.  https://doi.org/10.1104/pp.113.221911 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chi W-T, Fung RWM, Liu H-C et al (2009) Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant Cell Environ 32:917–927.  https://doi.org/10.1111/j.1365-3040.2009.01972.x CrossRefPubMedGoogle Scholar
  18. Chien C-H, Chow C-N, Wu N-Y et al (2015) EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics 16:S6.  https://doi.org/10.1186/1471-2164-16-S2-S6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chinnusamy V, Zhu J-K, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. In: Sunkar R (eds) Plant Stress Tolerance. Methods in Molecular Biology (Methods and Protocols), vol 639. Humana Press, pp 39–55Google Scholar
  20. Chow C-N, Zheng H-Q, Wu N-Y et al (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44:D1154–D1160.  https://doi.org/10.1093/nar/gkv1035 CrossRefPubMedGoogle Scholar
  21. Cruz-Mendívil A, López-Valenzuela JA, Calderón-Vázquez CL et al (2015) Transcriptional changes associated with chilling tolerance and susceptibility in ‘Micro-Tom’ tomato fruit using RNA-Seq. Postharvest Biol Technol 99:141–151.  https://doi.org/10.1016/j.postharvbio.2014.08.009 CrossRefGoogle Scholar
  22. Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810.  https://doi.org/10.1007/s00018-015-2089-6 CrossRefPubMedGoogle Scholar
  23. Farinati S, Rasori A, Varotto S, Bonghi C (2017) Rosaceae fruit development, ripening and post-harvest: an epigenetic perspective. Front Plant Sci 8:1247.  https://doi.org/10.3389/fpls.2017.01247 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Feng X-M, Zhao Q, Zhao L-L et al (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22.  https://doi.org/10.1186/1471-2229-12-22 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Funck D, Clauß K, Frommer WB, Hellmann HA (2012) The Arabidopsis CstF64-like RSR1/ESP1 protein participates in glucose signaling and flowering time control. Front Plant Sci 3:80.  https://doi.org/10.3389/fpls.2012.00080 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Genero M, Gismondi M, Monti LL et al (2016) Cell wall-related genes studies on peach cultivars with differential susceptibility to woolliness: looking for candidates as indicators of chilling tolerance. Plant Cell Rep 35:1235–1246.  https://doi.org/10.1007/s00299-016-1956-4 CrossRefPubMedGoogle Scholar
  27. Giraldo E, Díaz A, Corral JM, García A (2012) Applicability of 2-DE to assess differences in the protein profile between cold storage and not cold storage in nectarine fruits. J Proteomics 75:5774–5782.  https://doi.org/10.1016/j.jprot.2012.08.005 CrossRefPubMedGoogle Scholar
  28. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186.  https://doi.org/10.1093/nar/gkr944 CrossRefGoogle Scholar
  29. Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576.  https://doi.org/10.3389/fpls.2014.00576 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jeon J, Kim NY, Kim S et al (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386.  https://doi.org/10.1074/jbc.M109.096644 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jin J, Tian F, Yang D-C et al (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045.  https://doi.org/10.1093/nar/gkw982 CrossRefPubMedGoogle Scholar
  32. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282.  https://doi.org/10.1093/bioinformatics/8.3.275 CrossRefGoogle Scholar
  33. Jung H, Crisp P (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1311632110 CrossRefPubMedGoogle Scholar
  34. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703.  https://doi.org/10.1093/mp/sss128 CrossRefPubMedGoogle Scholar
  35. Kidokoro S, Watanabe K, Ohori T et al (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81:505–518.  https://doi.org/10.1111/tpj.12746 CrossRefPubMedGoogle Scholar
  36. Lara MV, Borsani J, Budde CO et al (2009) Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315–4333.  https://doi.org/10.1093/jxb/erp267 CrossRefPubMedGoogle Scholar
  37. Lauxmann MA, Brun B, Borsani J et al (2012) Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold. PLoS ONE 7:e51052.  https://doi.org/10.1371/journal.pone.0051052 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lauxmann MA, Borsani J, Osorio S et al (2014) Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ 37:601–616.  https://doi.org/10.1111/pce.12181 CrossRefPubMedGoogle Scholar
  39. Li X, Li X, Li M et al (2016) Dual function of NAC072 in ABF3-mediated ABA-responsive gene regulation in Arabidopsis. Front Plant Sci 7:1075.  https://doi.org/10.3389/fpls.2016.01075 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liang L, Zhang B, Yin X-R et al (2013) Differential expression of the CBF gene family during postharvest cold storage and subsequent shelf-life of peach fruit. Plant Mol Biol Rep 31:1358–1367.  https://doi.org/10.1007/s11105-013-0600-5 CrossRefGoogle Scholar
  41. Lurie S, Crisosto CH (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208CrossRefGoogle Scholar
  42. Lurie S, Pedreschi R (2014) Fundamental aspects of postharvest heat treatments. Hortic Res 1:14030.  https://doi.org/10.1038/hortres.2014.30 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ma Q, Suo J, Huber DJ et al (2014) Effect of hot water treatments on chilling injury and expression of a new C-repeat binding factor (CBF) in ‘Hongyang’ kiwifruit during low temperature storage. Postharvest Biol Technol 97:102–110.  https://doi.org/10.1016/j.postharvbio.2014.05.018 CrossRefGoogle Scholar
  44. Monti LL, Bustamante CA, Osorio S et al (2016) Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening. Food Chem 190:879–888.  https://doi.org/10.1016/j.foodchem.2015.06.043 CrossRefPubMedGoogle Scholar
  45. Nilo-Poyanco R, Vizoso P, Sanhueza D et al (2018) A Prunus persica genome-wide RNA-seq approach uncovers major differences in the transcriptome among chilling injury sensitive and non-sensitive varieties. Physiol Plant 166:772–793.  https://doi.org/10.1111/ppl.12831 CrossRefPubMedGoogle Scholar
  46. O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451.  https://doi.org/10.3389/fpls.2013.00451 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ogundiwin EA, Martí C, Forment J et al (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397.  https://doi.org/10.1007/s11103-008-9378-5 CrossRefPubMedGoogle Scholar
  48. Pan Y, Bradley G, Pyke K et al (2013) Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol 161:1476–1485.  https://doi.org/10.1104/pp.112.212654 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Park S, Lee C-M, Doherty CJ et al (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207.  https://doi.org/10.1111/tpj.12796 CrossRefPubMedGoogle Scholar
  50. Pons C, Martí C, Forment J et al (2014) A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS ONE 9:e90706.  https://doi.org/10.1371/journal.pone.0090706 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Puig CP, Dagar A, Marti Ibanez C et al (2015) Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 16:245.  https://doi.org/10.1186/s12864-015-1395-6 CrossRefPubMedCentralGoogle Scholar
  52. Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ et al (2003) A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65–70.  https://doi.org/10.1007/s00425-003-1086-4 CrossRefPubMedGoogle Scholar
  53. Sebastian A, Contreras-Moreira B (2014) footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Bioinformatics 30:258–265.  https://doi.org/10.1093/bioinformatics/btt663 CrossRefPubMedGoogle Scholar
  54. Su CF, Wang YC, Hsieh TH et al (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153:145–158.  https://doi.org/10.1104/pp.110.153015 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sun S, Yu J-P, Chen F et al (2008) TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem 283:6261–6271.  https://doi.org/10.1074/jbc.M706800200 CrossRefPubMedGoogle Scholar
  56. Sutoh K, Yamauchi D (2003) Two cis- acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J 34:635–645.  https://doi.org/10.1046/j.1365-313X.2003.01753.x CrossRefPubMedGoogle Scholar
  57. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tanou G, Minas IS, Scossa F et al (2017) Exploring priming responses involved in peach fruit acclimation to cold stress. Sci Rep 7:11358.  https://doi.org/10.1038/s41598-017-11933-3 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tao T (2008) Standalone BLAST Setup for Unix. 2010 May 31 [Updated 2016 Sep 7]. In: BLAST® Help [Internet]. Bethesda (MD): National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK52640/
  60. Thimm O, Bläsing O, Gibon Y et al (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939.  https://doi.org/10.1111/j.1365-313X.2004.02016.x CrossRefPubMedGoogle Scholar
  61. Tian T, Liu Y, Yan H et al (2017) AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129.  https://doi.org/10.1093/nar/gkx382 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tisdall JD (2003) Mastering perl for bioinformatics. O'Reilly Media, SebastopolGoogle Scholar
  63. Verde I, Jenkins J, Dondini L, et al (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:225. https://doi.org/10.1186/s12864-017-3606-9
  64. Wang K, Yin X-R, Zhang B et al (2017) Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. Plant Cell Environ 40:1531–1551.  https://doi.org/10.1111/pce.12951 CrossRefPubMedGoogle Scholar
  65. Wei Y, Hu W, Xia F et al (2016) Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response. Sci Rep 6:36864.  https://doi.org/10.1038/srep36864 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699.  https://doi.org/10.1093/oxfordjournals.molbev.a003851 CrossRefPubMedGoogle Scholar
  67. Wisniewski ME, Bassett CL, Renaut J et al (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584.  https://doi.org/10.1093/treephys/26.5.575 CrossRefPubMedGoogle Scholar
  68. Yang X, Zhu W, Zhang H et al (2016) Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. Peer J 4:e1961.  https://doi.org/10.7717/peerj.1961 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias AgrariasUniversidad Nacional del LitoralEsperanzaArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations