Advertisement

Planta

, 251:10 | Cite as

A two-step mutation process in the double WS1 homologs drives the evolution of burley tobacco, a special chlorophyll-deficient mutant with abnormal chloroplast development

  • Xinru WuEmail author
  • Daping Gong
  • Fei Xia
  • Changbo Dai
  • Xingwei Zhang
  • Xiaoming Gao
  • Shaomei Wang
  • Xu Qu
  • Yuhe Sun
  • Guanshan LiuEmail author
Original Article
  • 28 Downloads

Abstract

Main conclusion

The functional homologs WS1A and WS1B, identified by map-based cloning, control the burley character by affecting chloroplast development in tobacco, contributing to gene isolation and genetic improvement in polyploid crops.

Abstract

Burley represents a special type of tobacco (Nicotiana tabacum L.) cultivar that is characterized by a white stem with a high degree of chlorophyll deficiency. Although important progress in the research of burley tobacco has been made, the molecular mechanisms underlying this character remain unclear. Here, on the basis of our previous genetic analyses and preliminary mapping results, we isolated the White Stem 1A (WS1A) and WS1B genes using a map-based cloning approach. WS1A and WS1B are functional homologs with completely identical biological functions and highly similar expression patterns that control the burley character in tobacco. WS1A and WS1B are derived from Nicotiana sylvestris and Nicotiana tomentosiformis, the diploid ancestors of Nicotiana tabacum, respectively. The two genes encode zinc metalloproteases of the M50 family that are highly homologous to the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) protein of Arabidopsis and the Lutescent 2 (L2) protein of tomato. Transmission electron microscopic examinations indicated that WS1A and WS1B are involved in the development of chloroplasts by controlling the formation of thylakoid membranes, very similar to that observed for EGY1 and L2. The genotyping of historical tobacco varieties revealed that a two-step mutation process occurred in WS1A and WS1B during the evolution of burley tobacco. We also discussed the strategy for gene map-based cloning in polyploid plants with complex genomes. This study will facilitate the identification of agronomically important genes in tobacco and other polyploid crops and provide insights into crop improvement via molecular approaches.

Keywords

Burley tobacco Chloroplast Duplicated genes Map-based cloning Polyploid White stem 

Abbreviations

EGY1

Ethylene-dependent Gravitropism-deficient and Yellow-green 1

CDS

Coding sequence

InDel

Insertion/deletion

LG

Linkage group

SSR

Simple sequence repeat

Notes

Acknowledgements

We thank Prof. Yongfeng Guo (TRI, CAAS), Prof. Yingzhen Kong (TRI, CAAS), and Prof. Shubing Liu (Shandong Agricultural University) for critically reading this manuscript. We also thank the China National Infrastructure for Crop Germplasm Resources (Tobacco, Qingdao) for kindly providing the tobacco materials that were used in this study, including TN90 and other 22 burley tobacco varieties, 5 Maryland tobacco cultivars, and 248 tobacco landraces. This work was supported by grants from the National Natural Science Foundation of China (no. 31500983) and the Natural Science Foundation of Shandong Province (no. ZR2015CQ005).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors note that this study was performed and reported in accordance with ethical standards of the scientific conduct.

Supplementary material

425_2019_3312_MOESM1_ESM.pdf (2.9 mb)
Supplementary material 1 (PDF 2920 kb)
425_2019_3312_MOESM2_ESM.pdf (157 kb)
Supplementary material 2 (PDF 156 kb)

References

  1. Armbruster U, Pesaresi P, Pribil M, Hertle A, Leister D (2011) Update on chloroplast research: new tools, new topics, and new trends. Mol Plant 4:1–16.  https://doi.org/10.1093/mp/ssq060 CrossRefPubMedGoogle Scholar
  2. Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703.  https://doi.org/10.1105/tpc.105.039859 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barry CS, Aldridge GM, Herzog G et al (2012) Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato. Plant Physiol 159:1086–1098.  https://doi.org/10.1104/pp.112.197483 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bindler G, Plieske J, Bakaher N et al (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123.  https://doi.org/10.1007/s00122-011-1578-8 CrossRefGoogle Scholar
  5. Chas EG (1937) Historical factors affecting American tobacco types and uses and the evolution of the auction market. Agric Hist 11:43–57Google Scholar
  6. Chen G, Bi YR, Li N (2005) EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J 41:364–375.  https://doi.org/10.1111/j.1365-313X.2004.02308.x CrossRefPubMedGoogle Scholar
  7. Clausen RE, Cambron DR (1944) Inheritance in Nicotiana TabacumXVIII. monosomic analysis. Genetics 29:447–477PubMedPubMedCentralGoogle Scholar
  8. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846CrossRefGoogle Scholar
  9. Edwards KD, Fernandez-Pozo N, Drake-Stowe K et al (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 18:448.  https://doi.org/10.1186/s12864-017-3791-6 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814CrossRefGoogle Scholar
  11. Guo D, Gao X, Li H et al (2008) EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls. Plant Mol Biol 66:345–360.  https://doi.org/10.1007/s11103-007-9273-5 CrossRefPubMedGoogle Scholar
  12. Henika FS (1932) The inheritance of the White Burley character in tobacco. J Agric Res 44:477–493Google Scholar
  13. Hua Y, Wang C, Huang J, Wang K (2017) A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics 44:207–213.  https://doi.org/10.1016/j.jgg.2017.03.005 CrossRefPubMedGoogle Scholar
  14. Le Cunff L, Garsmeur O, Raboin LM et al (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2 ~ 12 ~ 115). Genetics 180:649–660.  https://doi.org/10.1534/genetics.108.091355 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Legg PD, Chaplin JF, Williamson RE (1977) Genetic diversity in burley and flue-cured tobacco. Crop Sci 17:943–947.  https://doi.org/10.2135/cropsci1977.0011183X001700060032x CrossRefGoogle Scholar
  16. Leitch IJ, Hanson L, Lim KY et al (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814.  https://doi.org/10.1093/aob/mcm326 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593.  https://doi.org/10.1104/pp.015727 CrossRefPubMedCentralGoogle Scholar
  18. Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana Germplasm Collection. Genet Resour Crop Evol 54:727–740.  https://doi.org/10.1007/s10722-006-0024-2 CrossRefGoogle Scholar
  19. Lewis RS, Parker RG, Danehower DA et al (2012) Impact of alleles at the Yellow burley (Yb) loci and nitrogen fertilization rate on nitrogen utilization efficiency and tobacco-specific nitrosamine (TSNA) formation in air-cured tobacco. J Agric Food Chem 60:6454–6461.  https://doi.org/10.1021/jf2053614 CrossRefPubMedGoogle Scholar
  20. Li Q, Wan J (2005) SSRHunter: development of a local searching software for SSR sites. Yi Chuan 27:808–810PubMedGoogle Scholar
  21. Li B, Li Q, Xiong L et al (2012) Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiol 160:2040–2051.  https://doi.org/10.1104/pp.112.206508 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606.  https://doi.org/10.1111/j.1095-8312.2004.00344.x CrossRefGoogle Scholar
  23. Liu F, Gong D, Zhang Q et al (2015) High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. Planta 241:629–640.  https://doi.org/10.1007/s00425-014-2186-z CrossRefPubMedGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Moon HS, Nifong JM, Nicholson JS et al (2009) Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci 49:2149–2159.  https://doi.org/10.2135/cropsci2009.01.0024 CrossRefGoogle Scholar
  26. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128.  https://doi.org/10.1016/j.pbi.2004.12.001 CrossRefPubMedGoogle Scholar
  27. Roulin A, Auer PL, Libault M et al (2013) The fate of duplicated genes in a polyploid plant genome. Plant J 73:143–153.  https://doi.org/10.1111/tpj.12026 CrossRefPubMedGoogle Scholar
  28. Schmidt G, Delaney S (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241.  https://doi.org/10.1007/s00438-010-0511-1 CrossRefGoogle Scholar
  29. Sierro N, Battey JND, Ouadi S et al (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60.  https://doi.org/10.1186/gb-2013-14-6-r60 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sierro N, Battey JND, Ouadi S et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833.  https://doi.org/10.1038/ncomms4833 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723CrossRefGoogle Scholar
  32. Stines BJ, Mann TJ (1960) Diploidization in Nicotiana tabacum. J Hered 51:222–227CrossRefGoogle Scholar
  33. Tong Z, Yang Z, Chen X et al (2012) Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breed 131:674–680.  https://doi.org/10.1111/j.1439-0523.2012.01984.x CrossRefGoogle Scholar
  34. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946.  https://doi.org/10.1111/j.1469-8137.2004.01293.x CrossRefPubMedGoogle Scholar
  35. Wu F, Eannetta NT, Xu Y et al (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827.  https://doi.org/10.1007/s00122-009-1206-z CrossRefPubMedGoogle Scholar
  36. Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose plant architecture 1, an indeterminate domain protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161:317–329.  https://doi.org/10.1104/pp.112.208496 CrossRefPubMedGoogle Scholar
  37. Wu Q, Wu X, Zhang X et al (2014) Mapping of two white stem genes in tetraploid common tobacco (Nicotiana tabacum L.). Mol Breed 34:1065–1074.  https://doi.org/10.1007/s11032-014-0097-0 CrossRefGoogle Scholar
  38. Ye S, Dhillon S, Ke X, Collins AR, Day INM (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:e88–e88.  https://doi.org/10.1093/nar/29.17.e88 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yu FW, Zhu XF, Li GJ, Kronzucker HJ, Shi WM (2016) The chloroplast protease AMOS1/EGY1 affects phosphate homeostasis under phosphate stress. Plant Physiol 172:1200–1208.  https://doi.org/10.1104/pp.16.00786 CrossRefPubMedCentralGoogle Scholar
  40. Zhu J, Chen J, Gao F et al (2017) Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis–next generation sequencing and virus-induced gene silencing strategies. J Exp Bot 68:4125–4135.  https://doi.org/10.1093/jxb/erx240 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xinru Wu
    • 1
    • 2
    Email author
  • Daping Gong
    • 1
    • 2
  • Fei Xia
    • 1
    • 2
  • Changbo Dai
    • 1
    • 2
  • Xingwei Zhang
    • 1
    • 2
  • Xiaoming Gao
    • 1
    • 2
  • Shaomei Wang
    • 1
    • 2
  • Xu Qu
    • 3
  • Yuhe Sun
    • 1
    • 2
  • Guanshan Liu
    • 1
    • 2
    Email author
  1. 1.Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
  2. 2.Key Laboratory for Tobacco Gene ResourcesState Tobacco Monopoly AdministrationQingdaoChina
  3. 3.Qingdao Tobacco Seed Co., LtdQingdaoChina

Personalised recommendations