Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits
- 39 Downloads
Abstract
Main conclusions
Using 227 dicotyledonous species in temperate region, we found the relationships among densities of different-order veins, creating diversity of leaf vascular architectures.
Abstract
Dicotyledonous angiosperms commonly possess a hierarchical leaf vascular system, wherein veins of different orders have different functions. Minor vein spacing determines leaf hydraulic efficiency, whereas the major veins provide mechanical support. However, there is limited information on the coordination between these vein orders across species, limiting our understanding of how diversity in vein architecture is arrayed. We aimed to examine the (1) relationships between vein densities at two spatial scales (lower- vs. higher-order veins and among minor veins) and (2) relationships of vein densities with plant functional traits. We studied ten traits related to vein densities and three functional traits (leaf dry mass per area [LMA], leaf longevity [LL], and adult plant height [Hadult]) for 227 phylogenetically diverse plant species that occur in temperate regions and examined the vein–vein and vein–functional traits relationships across species. The densities of lower- and higher-order veins were positively correlated across species. The minor vein density was positively correlated with the densities of both areoles and free-ending veins, and vascular networks with higher minor vein density tended to have a lower ratio of free-ending veins to areoles across species. Neither densities of lower- nor higher-order veins were related to LMA and LL. On the other hand, the densities of veins and areoles tended to be positively correlated with Hadult. These results suggest that densities of different-order veins are developmentally coordinated across dicotyledonous angiosperms and form the independent axis in resource use strategies based on the leaf economics spectrum.
Keywords
Areole Free-ending vein Leaf economics spectrum (LES) Major vein Minor vein Phylogenetic signalNotes
Acknowledgements
We thank the Division of Natural History, Museum of Nature and Human Activities, Hyogo, Japan, for providing access to the Yokoyama Akira Cleared Leaf Collection. K. Handa helped us to access the collection. Drs. K. Kitajima, K. Kitayama, A. Osawa, A. Fajardo, and M. R. Carins Murphy provided valuable comments on the early version of the manuscript. We are grateful to the two anonymous reviewers for their constructive comments, which improved our manuscript greatly.
Supplementary material
References
- Aiba M, Kurokawa H, Onoda Y, Oguro M, Nakashizuka T, Masaki T (2016) Context-dependent changes in the functional composition of tree communities along successional gradients after land-use change. J Ecol 104:1347–1356. https://doi.org/10.1111/1365-2745.12597 CrossRefGoogle Scholar
- Asner GP, Martin RE (2011) Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytol 189:999–1012. https://doi.org/10.1111/j.1469-8137.2010.03549.x CrossRefPubMedGoogle Scholar
- Banavar JR, Colaiori F, Flammini A, Maritan A, Rinaldo A (2000) Topology of the fittest transportation network. Phys Rev Lett 84:4745–4748. https://doi.org/10.1103/PhysRevLett.84.4745 CrossRefPubMedGoogle Scholar
- Blomberg SP, Garland TJ, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (NY) 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x CrossRefGoogle Scholar
- Blonder B, Violle C, Bentley LP, Enquist BJ (2011) Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14:91–100. https://doi.org/10.1111/j.1461-0248.2010.01554.x CrossRefPubMedGoogle Scholar
- Blonder B, Baldwin BG, Enquist BJ, Robichaux RH (2016) Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). J Ecol 104:219–228. https://doi.org/10.1111/1365-2745.12497 CrossRefGoogle Scholar
- Blonder B, Salinas N, Patrick Bentley L, Shenkin A, Chambi Porroa PO, Valdez Tejeira Y, Violle C, Fyllas NM, Goldsmith GR, Martin RE, Asner GP, Díaz S, Enquist BJ, Malhi Y (2017) Predicting trait-environment relationships for venation networks along an Andes-Amazon elevation gradient. Ecology 98:1239–1255. https://doi.org/10.1002/ecy.1747 CrossRefPubMedGoogle Scholar
- Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc R Soc B Biol Sci 276:1771–1776. https://doi.org/10.1098/rspb.2008.1919 CrossRefGoogle Scholar
- Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898. https://doi.org/10.1104/pp.107.101352 CrossRefPubMedPubMedCentralGoogle Scholar
- Brodribb TJ, Jordan GJ, Carpenter RJ (2013) Unified changes in cell size permit coordinated leaf evolution. New Phytol 199:559–570. https://doi.org/10.1111/nph.12300 CrossRefPubMedGoogle Scholar
- Carins Murphy MR, Jordan GJ, Brodribb TJ (2016) Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Ann Bot 118:1127–1138. https://doi.org/10.1093/aob/mcw167 CrossRefPubMedPubMedCentralGoogle Scholar
- Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Pooter H (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. https://doi.org/10.1071/BT02124 CrossRefGoogle Scholar
- Corson F (2010) Fluctuations and redundancy in optimal transport networks. Phys Rev Lett 104:048703. https://doi.org/10.1103/PhysRevLett.104.048703 CrossRefPubMedGoogle Scholar
- Demmig-Adams B, Stewart JJ, Adams WW 3rd (2017) Environmental regulation of intrinsic photosynthetic capacity: an integrated view. Curr Opin Plant Biol 37:34–41. https://doi.org/10.1016/j.pbi.2017.03.008 CrossRefPubMedGoogle Scholar
- Dengler N, Kang J (2001) Vascular patterning and leaf shape. Curr Opin Plant Biol 4:50–56. https://doi.org/10.1016/S1369-5266(00)00135-7 CrossRefPubMedGoogle Scholar
- Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB et al (2015) The global spectrum of plant form and function. Nature 529:167–171. https://doi.org/10.1038/nature16489 CrossRefPubMedGoogle Scholar
- Dodds PS (2010) Optimal form of branching supply and collection networks. Phys Rev Lett 104:048702. https://doi.org/10.1103/PhysRevLett.104.048702 CrossRefPubMedGoogle Scholar
- Dungan RJ, Duncan RP, Whitehead D (2003) Investigating leaf lifespans with interval-censored failure time analysis. New Phytol 158:593–600. https://doi.org/10.1046/j.1469-8137.2003.00772.x CrossRefGoogle Scholar
- Durand M (2006) Architecture of optimal transport networks. Phys Rev E 73:016116. https://doi.org/10.1103/PhysRevE.73.016116 CrossRefGoogle Scholar
- Durand M (2007) Structure of optimal transport networks subject to a global constraint. Phys Rev Lett 98:088701. https://doi.org/10.1103/PhysRevLett.98.088701 CrossRefPubMedGoogle Scholar
- Ellis B, Daly DC, Hickey LJ, Mitchell JV, Johnson KR, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, IthacaGoogle Scholar
- Fiorin L, Brodribb TJ, Anfodillo T (2016) Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytol 209:216–227. https://doi.org/10.1111/nph.13577 CrossRefPubMedGoogle Scholar
- Foster AS (1952) Foliar venation in angiosperms from an ontogenetic standpoint. Am J Bot 39:752–866CrossRefGoogle Scholar
- Fujita H, Mochizuki A (2006) The origin of the diversity of leaf venation pattern. Dev Dyn 235:2710–2721. https://doi.org/10.1002/dvdy.20908 CrossRefPubMedGoogle Scholar
- Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ, Millam RC, Meerow AW, Molvray M, Kores PJ, O’Brien HE et al (2005) Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proc R Soc B Biol Sci 272:1481–1490. https://doi.org/10.1098/rspb.2005.3067 CrossRefGoogle Scholar
- Handa K (2015) A catalog of extant cleared leaf collection. Hum Nat 26:85–406Google Scholar
- Hara N (1962) Histogenesis of foliar venation of Daphne pseudo-mezereum A. Gray. Bot Mag Tokyo 75:107–113CrossRefGoogle Scholar
- Hickey LJ (1973) Classification of the architecture of dicotyledonous leaves. Am J Bot 60:17–33CrossRefGoogle Scholar
- Iida Y, Sun IF, Price CA, Chen CT, Chen ZS, Chiang JM, Huang CL, Swenson NG (2016) Linking leaf veins to growth and mortality rates: an example from a subtropical tree community. Ecol Evol 6:6085–6096. https://doi.org/10.1002/ece3.2311 CrossRefPubMedPubMedCentralGoogle Scholar
- Katifori E, Szöllosi GJ, Magnasco MO (2010) Damage and fluctuations induce loops in optimal transport networks. Phys Rev Lett 104:048704. https://doi.org/10.1103/PhysRevLett.104.048704 CrossRefPubMedGoogle Scholar
- Kawai K, Okada N (2016) How are leaf mechanical properties and water-use traits coordinated by vein traits? A case study in Fagaceae. Funct Ecol 30:527–536. https://doi.org/10.1111/1365-2435.12526 CrossRefGoogle Scholar
- Kawai K, Okada N (2018) Roles of major and minor vein in leaf water deficit tolerance and structural properties in 11 temperate deciduous woody species. Trees Struct Funct 32:1573–1582. https://doi.org/10.1007/s00468-018-1734-8 CrossRefGoogle Scholar
- Kawai K, Okada N (2019) Coordination of leaf and stem traits in 25 species of Fagaceae from three biomes of East Asia. Botany 97:391–403. https://doi.org/10.1139/cjb-2019-0010 CrossRefGoogle Scholar
- Kawai K, Miyoshi R, Okada N (2017) Bundle sheath extensions are linked to water relations but not to mechanical and structural properties of leaves. Trees Struct Funct 31:1227–1237. https://doi.org/10.1007/s00468-017-1540-8 CrossRefGoogle Scholar
- Keck F, Rimet F, Bouchez A, Franc A (2016) Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 6:2774–2780. https://doi.org/10.1002/ece3.2051 CrossRefPubMedPubMedCentralGoogle Scholar
- Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanaka-Oda A, Ichie T (2015) Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 177:191–202. https://doi.org/10.1007/s00442-014-3126-0 CrossRefPubMedGoogle Scholar
- Kikuzawa K, Ackerly D (1999) Significance of leaf longevity in plants. Plant Species Biol 14:39–45. https://doi.org/10.1046/j.1442-1984.1999.00005.x CrossRefGoogle Scholar
- Kobayashi H, Daimaruya M, Kuribayashi K (2000) Venation pattern of butterbur leaf and it’s mechanical contribution. J Soc Mater Sci Jpn 49:1318–1323CrossRefGoogle Scholar
- Laguna MF, Bohn S, Jagla EA (2008) The role of elastic stresses on leaf venation morphogenesis. PLoS Comput Biol 4:e1000055. https://doi.org/10.1371/journal.pcbi.1000055 CrossRefPubMedPubMedCentralGoogle Scholar
- Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261. https://doi.org/10.1016/S0065-2504(08)60148-8 CrossRefGoogle Scholar
- Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Zeng H, Niinemets Ü, Guo D (2015) Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol Lett 18:899–906. https://doi.org/10.1111/ele.12466 CrossRefGoogle Scholar
- McElwain JC, Yiotis C, Lawson T (2016) Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol 209:94–103. https://doi.org/10.1111/nph.13579 CrossRefPubMedGoogle Scholar
- McKown AD, Cochard H, Sack L (2010) Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 175:447–460. https://doi.org/10.1086/650721 CrossRefPubMedGoogle Scholar
- Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.x CrossRefPubMedGoogle Scholar
- Muller O, Cohu CM, Stewart JJ, Protheroe JA, Demmig-Adams B, Adams WW (2014) Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes. Physiol Plant 152:174–183. https://doi.org/10.1111/ppl.12155 CrossRefPubMedGoogle Scholar
- Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9:1121–1135. https://doi.org/10.1105/tpc.9.7.1121 CrossRefPubMedPubMedCentralGoogle Scholar
- Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007) Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann Bot 100:283–303. https://doi.org/10.1093/aob/mcm107 CrossRefPubMedPubMedCentralGoogle Scholar
- Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytol 143:19–31CrossRefGoogle Scholar
- Ohsawa M, Nitta I (1997) Patterning of subtropical/warm-temperate evergreen broad-leaved forests in East Asian mountains with special reference to shoot phenology. Tropics 6:317–334CrossRefGoogle Scholar
- Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M (2014) Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett 17:988–997. https://doi.org/10.1111/ele.12302 CrossRefGoogle Scholar
- Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196:349–366. https://doi.org/10.1111/j.1469-8137.2012.04273.x CrossRefPubMedGoogle Scholar
- Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412 CrossRefGoogle Scholar
- Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme
- Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x CrossRefPubMedGoogle Scholar
- Pray TR (1959) Pattern and ontogeny of the foliar venation of Bobea elatior (Rubiaceae). Pacific Sci 13:3–13Google Scholar
- Pray TR (1962) Ontogeny of the closed dichotomous venation of Regnellidium. Am J Bot 49:464–472. https://doi.org/10.1002/j.1537-2197.1962.tb14966.x CrossRefGoogle Scholar
- Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and function of leaf venation architecture: a review. Ann Bot 87:553–566. https://doi.org/10.1006/anbo.2001.1391 CrossRefGoogle Scholar
- Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262. https://doi.org/10.1016/S0065-2296(08)60351-1 CrossRefGoogle Scholar
- Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87:483–491. https://doi.org/10.1890/05-0710 CrossRefPubMedGoogle Scholar
- Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000. https://doi.org/10.1111/nph.12253 CrossRefPubMedGoogle Scholar
- Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012) Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 3:837. https://doi.org/10.1038/ncomms1835 CrossRefPubMedGoogle Scholar
- Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013) How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J Exp Bot 64:4053–4080. https://doi.org/10.1093/jxb/ert316 CrossRefPubMedGoogle Scholar
- Sanches MC, Ribeiro SP, Dalvi VC, da Silva Junior MB, de Sousa HC, de Lemos-Filho JP (2010) Differential leaf traits of a neotropical tree Cariniana legalis (Mart.) Kuntze (Lecythidaceae): comparing saplings and emergent trees. Trees Struct Funct 24:79–88. https://doi.org/10.1007/s00468-009-0380-6 CrossRefGoogle Scholar
- Satake Y, Hara N, Watari S, Tominari T (1989a) Wild flowers of Japan. Woody Plants I, TokyoGoogle Scholar
- Satake Y, Hara N, Watari S, Tominari T (1989b) Wild flowers of Japan. Woody Plants II, TokyoGoogle Scholar
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019 CrossRefPubMedPubMedCentralGoogle Scholar
- Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:832–843. https://doi.org/10.1104/pp.111.173856 CrossRefPubMedPubMedCentralGoogle Scholar
- Scoffoni C, Chatelet DS, Pasquet-Kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L (2016) Hydraulic basis for the evolution of photosynthetic productivity. Nat Plants 2:16072. https://doi.org/10.1038/nplants.2016.72 CrossRefPubMedGoogle Scholar
- R core team (2016) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
- Walls RL (2011) Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. Am J Bot 98:244–253. https://doi.org/10.3732/ajb.1000154 CrossRefPubMedGoogle Scholar
- Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x CrossRefGoogle Scholar
- Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. https://doi.org/10.1111/j.1471-8286.2004.00829.x CrossRefGoogle Scholar
- Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. https://doi.org/10.1023/A:1004327224729 CrossRefGoogle Scholar
- Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellssen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403 CrossRefPubMedGoogle Scholar
- Yonekura K, Kajita T (2003) BGPlants: Japanese scientific name index (YList). http://ylist.info/. Accessed 1 March 2015
- Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ et al (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92. https://doi.org/10.1038/nature12872 CrossRefGoogle Scholar