, Volume 250, Issue 5, pp 1781–1787 | Cite as

LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions

  • Salvatore Esposito
  • Fabio Barteri
  • Josep Casacuberta
  • Marie Mirouze
  • Domenico CarputoEmail author
  • Riccardo AversanoEmail author
Short Communication


Main conclusion

Copia/Ale is the youngest lineage in both Solanum tuberosum and S. commersonii. Within it, we identified nightshade, a new LTR element active in the cultivated potato.


From an evolutionary perspective, long-terminal repeat retrotransposons (LTR-RT) activity during stress may be viewed as a mean by which organisms can keep up rates of genetic adaptation to changing conditions. Potato is one of the most important crop consumed worldwide, but studies on LTR-RT characterization are still lacking. Here, we assessed the abundance, insertion time and activity of LTR-RTs in both cultivated Solanum tuberosum and its cold-tolerant wild relative S. commersonii genomes. Gypsy elements were more abundant than Copia ones, suggesting that the former was somehow more successful in colonizing potato genomes. However, Copia elements, and in particular, the Ale lineage, are younger than Gypsy ones, since their insertion time was in average ~ 2 Mya. Due to the ability of LTR-RTs to be circularized by the host DNA repair mechanisms, we identified via mobilome-seq a Copia/Ale element (called nightshade, informal name used for potato family) active in S. tuberosum genome. Our analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in potato.


Extrachromosomal circular DNA Insertion time Mobilome Potato Wild species 



Long-terminal repeat retrotransposons


Transposable element


Depth of coverage


Extrachromosomal circular DNA



This work was carried out within the project “Development of potato genetic resources for sustainable agriculture” (PORES) funded by the University of Naples Federico II (Project ID: E76J17000010001). We are grateful to Mr. Raffaele Garramone for his technical assistance. No conflict of interest declared.

Supplementary material

425_2019_3283_MOESM1_ESM.tif (409 kb)
Supplementary material 1 (TIFF 408 kb)
425_2019_3283_MOESM2_ESM.tif (169 kb)
Supplementary material 2 (TIFF 169 kb)
425_2019_3283_MOESM3_ESM.tif (191 kb)
Supplementary material 3 (TIFF 190 kb)
425_2019_3283_MOESM4_ESM.tif (371 kb)
Supplementary material 4 (TIFF 370 kb)


  1. Achour Z, Joets J, Leguilloux M, Sellier H, Pichon J-P, Leveugle M et al (2019) Low temperature triggers genome-wide hypermethylation of transposable elements and centromeres in maize. CrossRefGoogle Scholar
  2. Alzohairy AM, Sabir JSM, Gyulai G, Younis RAA, Jansen RK, Bahieldin A (2014) Environmental stress activation of plant long-terminal repeat retrotransposons. Funct Plant Biol 41:557–567CrossRefGoogle Scholar
  3. Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108CrossRefGoogle Scholar
  4. Aversano R, Contaldi F, Ercolano MR et al (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968CrossRefGoogle Scholar
  5. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255CrossRefGoogle Scholar
  6. Carputo D, Castaldi L, Caruso I, Aversano R, Monti L, Frusciante L (2007) Resistance to frost and tuber soft rot in near-pentaploid Solanum tuberosumS. commersonii hybrids. Breed Sci 57:145–151CrossRefGoogle Scholar
  7. Cho J, Benoit M, Catoni M, Drost HG, Brestovitsky A, Oosterbeek M, Paszkowski J (2019) Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat Plants 5:26–33CrossRefGoogle Scholar
  8. Coil D, Jospin G, Darling AE (2015) AE A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589CrossRefGoogle Scholar
  9. De Haan S, Rodriguez F (2016) Potato origin and production. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Elsevier, London, pp 1–32Google Scholar
  10. Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du D, Du X, Mattia MR, Wang Y, Yu Q, Huang M, Yu Y, Grosser JW, Gmitter FG Jr (2018) LTR retrotransposons from the Citrus x clementina genome: characterization and application. Tree Genet Genomes 14:43. CrossRefGoogle Scholar
  12. Esposito S, Aversano R, D’Amelia V, Villano C, Alioto D, Mirouze M, Carputo D (2018) Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. Planta 248:729–743CrossRefGoogle Scholar
  13. Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D (2019a) Deep-sequencing of Solanum commersonii smallRNA libraries reveals riboregulators involved in cold stress response. Plant Biol. (In press) CrossRefGoogle Scholar
  14. Esposito S, D’Amelia V, Carputo D, Aversano R (2019b) Genes involved in stress signals: the CBLs-CIPKs network in cold tolerant Solanum commersonii. Biol Plant.
  15. Gaiero P, Vaio M, Peters SA, Schranz ME, de Jong H, Speranza PR (2018) Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Annals Bot Lond 123:521–532CrossRefGoogle Scholar
  16. Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187CrossRefGoogle Scholar
  17. Hackbusch J, Richter K, Müller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908–4912CrossRefGoogle Scholar
  18. Jaillon O, Aury JM, Benjamin N (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefGoogle Scholar
  19. Jiang N, Visa S, Wu S, Van Der Knaap E (2012) Rider transposon insertion and phenotypic change in tomato. In: Grandbastien MA, Casacuberta JM (eds) Plant Transposable Elements, Topics in Current Genetics, Heidelberg. Springer-Verlag, Berlin, pp 297–312Google Scholar
  20. Lanciano S, Carpentier MC, Llauro C, Jobet E, Robakowska-Hyzorek D, Lasserre E, Ghesquière A, Panaud O, Mirouze M (2017) Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet 13:e1006630CrossRefGoogle Scholar
  21. Leisner CP, Hamilton JP, Crisovan E, Manrique-Carpintero NC, Marand AP, Newton L, Pham GM, Jiang J, Douches DS, Jansky SH, Buell CR (2018) Genome sequence of M6, a diploid inbred clone of the high glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94:562–570CrossRefGoogle Scholar
  22. Ma JX, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869CrossRefGoogle Scholar
  23. Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378CrossRefGoogle Scholar
  24. Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sánchez-Puerta MV (2017) Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 145:417–430CrossRefGoogle Scholar
  25. Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269CrossRefGoogle Scholar
  26. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  27. Potter SC, Luciani A, Eddy SR, Park YM, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204CrossRefGoogle Scholar
  28. Qiu F, Ungerer MC (2018) Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. BMC Plant Biol 18:6CrossRefGoogle Scholar
  29. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45CrossRefGoogle Scholar
  30. Strand D, Mcdonald JF (1985) Copia is transcriptionally responsive to environmental stress. Nucl Acids Res 13:4401–4410CrossRefGoogle Scholar
  31. Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I (2010) Stress-induced activation of heterochromatic transcription. PLoS Genet 6:e1001175. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Van der Knaap E, Chakrabarti M, Hsuan Chu Y, Clevenger JP, Illa-Berenguer E, Huang Z, Keyhaninejad N, Mu Q, Sun L, Wang Y, Wu S (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227PubMedPubMedCentralGoogle Scholar
  33. Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784CrossRefGoogle Scholar
  34. Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genom 8:218CrossRefGoogle Scholar
  35. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540CrossRefGoogle Scholar
  36. Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, Oliveira RD, IWGS C, Mayer KFX, Paux E, Choulet F (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19:103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
  2. 2.Center for Research in Agricultural GenomicsConsejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Institut de Recherche pour le Développement, IRD DIADEUniversité de Perpignan, Plant Genome and Development LaboratoryPerpignanFrance

Personalised recommendations