Advertisement

Planta

, Volume 250, Issue 6, pp 1867–1879 | Cite as

Cellulose-rich secondary walls in wave-swept red macroalgae fortify flexible tissues

  • Patrick T. MartoneEmail author
  • Kyra Janot
  • Miki Fujita
  • Geoffrey Wasteneys
  • Katia Ruel
  • Jean-Paul Joseleau
  • José M. Estevez
Original Article

Abstract

Main conclusion

Cellulosic secondary walls evolved convergently in coralline red macroalgae, reinforcing tissues against wave-induced breakage, despite differences in cellulose abundance, microfibril orientation, and wall structure.

Abstract

Cellulose-enriched secondary cell walls are the hallmark of woody vascular plants, which develop thickened walls to support upright growth and resist toppling in terrestrial environments. Here we investigate the striking presence and convergent evolution of cellulosic secondary walls in coralline red algae, which reinforce thalli against forces applied by crashing waves. Despite ostensible similarities to secondary wall synthesis in land plants, we note several structural and mechanical differences. In coralline red algae, secondary walls contain three-times more cellulose (~ 22% w/w) than primary walls (~ 8% w/w), and their presence nearly doubles the total thickness of cell walls (~ 1.2 µm thick). Field emission scanning electron microscopy revealed that cellulose bundles are cylindrical and lack any predominant orientation in both primary and secondary walls. His-tagged recombinant carbohydrate-binding module differentiated crystalline and amorphous cellulose in planta, noting elevated levels of crystalline cellulose in secondary walls. With the addition of secondary cell walls, Calliarthron genicular tissues become significantly stronger and tougher, yet remain remarkably extensible, more than doubling in length before breaking under tension. Thus, the development of secondary walls contributes to the strong-yet-flexible genicular tissues that enable coralline red algae to survive along wave-battered coastlines throughout the NE Pacific. This study provides an important evolutionary perspective on the development and biomechanical significance of secondary cell walls in a non-model, non-vascular plant.

Keywords

Biomechanics Carbohydrate-binding module Calliarthron Convergent evolution Coralline Genicula Intertidal Macroalgae Rhodophyta Seaweed 

Abbreviations

CBM

Carbohydrate-binding module

CW

Cell wall

FESEM

Field emission scanning electron microscopy

TC

Terminal complex

Notes

Acknowledgements

We would like to thank Chris Somerville and Mark Denny for all of their support and insight during the early development of this project. We thank the UBC BioImaging Facility for state-of-the-art infrastructure and technical assistance. We thank Paul Knox (Leeds, UK) and H. Gilbert (Newcastle) for providing CBM3a and CBM28 to K. R. and J-P. J. This manuscript benefitted from helpful discussions with Mark Denny, Shawn Mansfield, and Sam Starko. P. T. M. acknowledges support from a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant, and J. M. E to ANPCyT (PICT2016-0132 and PICT2017-0066) and ICGEB (CRP/ARG16-03).

References

  1. Arioli T, Peng L, Betzner AS et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefGoogle Scholar
  2. Bilan MI, Usov AI (2001) Polysaccharides of calcareous algae and their effect on the calcification process. Russ J Bioorg Chem 27:2–16CrossRefGoogle Scholar
  3. Blake AW, McCartney L, Flint JE et al (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329.  https://doi.org/10.1074/jbc.M605903200 CrossRefGoogle Scholar
  4. Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93:1391–1401.  https://doi.org/10.3732/ajb.93.10.1391 CrossRefGoogle Scholar
  5. Carroll A, Mansoori N, Li S et al (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160:726–737.  https://doi.org/10.1104/pp.112.199208 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cases MR, Stortz CA, Cerezo AS (1994) Structure of the ‘corallinans’—sulfated xylogalactans from Corallina officinalis. Int J Biol Macromol 16:93–97.  https://doi.org/10.1016/0141-8130(94)90021-3 CrossRefGoogle Scholar
  7. Chantreau M, Chabbert B, Billiard S et al (2015) Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J 13:1312–1324.  https://doi.org/10.1111/pbi.12350 CrossRefGoogle Scholar
  8. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861.  https://doi.org/10.1038/nrm1746 CrossRefGoogle Scholar
  9. Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204.  https://doi.org/10.3389/fpls.2012.00204 CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Micco V, Ruel K, Joseleau J-P, Aronne G (2010) Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination? Planta 232:621–627.  https://doi.org/10.1007/s00425-010-1202-1 CrossRefGoogle Scholar
  11. Delmer DP (1991) The biochemistry of cellulose synthesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 100–107Google Scholar
  12. Denny MW, King FA (2016) The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties. J Exp Biol 219:1843–1850.  https://doi.org/10.1242/jeb.138867 CrossRefGoogle Scholar
  13. Denny M, Mach K, Tepler S, Martone P (2013) Indefatigable: an erect coralline alga is highly resistant to fatigue. J Exp Biol 216:3772–3780.  https://doi.org/10.1242/jeb.091264 CrossRefGoogle Scholar
  14. Dodgson KS, Price RG (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110PubMedPubMedCentralGoogle Scholar
  15. Dubois M, Gilles KA, Hamilton JK et al (1956) Calorimetric method of determination of sugars and related substances. Anal Chem 28:350–356Google Scholar
  16. Emons AMC, Schel JHN, Mulder BM (2002) The geometrical model for microfibril deposition and the influence of the cell wall matrix. Plant Biol 4:22–26.  https://doi.org/10.1055/s-2002-20432 CrossRefGoogle Scholar
  17. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  18. Foissner I, Wasteneys GO (2012) The characean internodal cell as a model system for studying wound healing. J Microsc 247:10–22.  https://doi.org/10.1111/j.1365-2818.2011.03572.x CrossRefGoogle Scholar
  19. Foissner I, Wasteneys GO (2014) Characean internodal cells as a model system for the study of cell organization. In: Jeon KW (ed) International review of cell and molecular biology. Academic Press, Burlington, pp 307–364Google Scholar
  20. Fujita M, Wasteneys GO (2014) A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Protoplasma 251:687–698.  https://doi.org/10.1007/s00709-013-0571-2 CrossRefGoogle Scholar
  21. Gabrielson PW, Miller KA, Martone PT (2011) Morphometric and molecular analyses confirm two distinct species of Calliarthron (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. Phycologia 50:298–316.  https://doi.org/10.2216/10-42.1 CrossRefGoogle Scholar
  22. Geitmann A (2010) Mechanical modeling and structural analysis of the primary plant cell wall. Curr Opin Plant Biol 13:693–699.  https://doi.org/10.1016/j.pbi.2010.09.017 CrossRefGoogle Scholar
  23. Giddings TH, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339.  https://doi.org/10.1083/jcb.84.2.327 CrossRefGoogle Scholar
  24. Gierlinger N (2014) Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Front Plant Sci 5:306.  https://doi.org/10.3389/fpls.2014.00306 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gordon JE (1978) Structures: or why things don’t fall down. Penguin Books, HarmondsworthCrossRefGoogle Scholar
  26. Hale B (2001) Macroalgal materials: foiling fracture and fatigue from fluid forces. Stanford University, PhDGoogle Scholar
  27. Harris PJ (2006) Primary and secondary plant cell walls: a comparative overview. N Zeal J For Sci 36:36–53Google Scholar
  28. Heaney-Kieras J, Roden L, Chapman DJ (1977) The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Biochem J 165:1–9CrossRefPubMedGoogle Scholar
  29. Janot K (2018) Mechanical and chemical convergence of joints in three lineages of articulated coralline algae. Ph.D. thesis, University of British Columbia, CanadaGoogle Scholar
  30. Janot K, Martone PT (2016) Convergence of joint mechanics in independently evolving, articulated coralline algae. J Exp Biol 219:383–391.  https://doi.org/10.1242/jeb.131755 CrossRefGoogle Scholar
  31. Johansen HW (1981) Coralline algae, a first synthesis. CRC Press Inc., Boca RatonGoogle Scholar
  32. Joseleau J-P, Perez S (2016) The plant cell walls. http://www.glycopedia.eu/IMG/pdf/theplantcellwalls.pdf. Accessed 4 Mar 2019
  33. Kim N-H, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203.  https://doi.org/10.1006/jsbi.1996.0083 CrossRefGoogle Scholar
  34. Kloareg B, Quatrano RS (1988) Structure of the cell wall of marine algae and ecophysiological functions of the matrix polysaccharides. Ocean Mar Biol Ann Rev 26:259–315Google Scholar
  35. Köhler L, Spatz H-C (2002) Micromechanics of plant tissues beyond the linear-elastic range. Planta 215:33–40.  https://doi.org/10.1007/s00425-001-0718-9 CrossRefGoogle Scholar
  36. Kolender AA, Matulewicz MC, Cerezo AS (1995) Structural analysis of antiviral sulfated alpha-d-(1 → 3)-linked mannans. Carbohydr Res 273(2):179–185CrossRefGoogle Scholar
  37. Koyama M, Helbert W, Imai T et al (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095CrossRefGoogle Scholar
  38. Lehtiö J, Sugiyama J, Gustavsson M et al (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489.  https://doi.org/10.1073/pnas.212651999 CrossRefGoogle Scholar
  39. Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. The arabidopsis book, 2014(12).  https://doi.org/10.1199/tab.0169 CrossRefGoogle Scholar
  40. Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43:181–190.  https://doi.org/10.1111/j.1365-313X.2005.02447.x CrossRefGoogle Scholar
  41. Martone PT (2006) Size, strength and allometry of joints in the articulated coralline Calliarthron. J Exp Biol 209:1678–1689CrossRefGoogle Scholar
  42. Martone PT (2007a) Kelp versus coralline: cellular basis for mechanical strength in the wave-swept seaweed Calliarthron (Corallinaceae, Rhodophyta). J Phycol 43:882–891CrossRefGoogle Scholar
  43. Martone PT (2007b) Biomechanics of flexible joints in the calcified seaweed Calliarthron cheilosporioides. Ph.D. thesis, Stanford UniversityGoogle Scholar
  44. Martone PT, Denny MW (2008) To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed. J Exp Biol 211:3433–3441CrossRefGoogle Scholar
  45. Martone PT, Estevez JM, Lu FC et al (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175CrossRefGoogle Scholar
  46. Martone PT, Navarro DA, Stortz CA, Estevez JM (2010) Differences in polysaccharide structure between calcified and uncalcified segments in the coralline Calliarthron cheilosporioides (Corallinales, Rhodophyta). J Phycol 46:507–515.  https://doi.org/10.1111/j.1529-8817.2010.00828.x CrossRefGoogle Scholar
  47. Matulewicz MC, Cerezo AS, Jarret RM, Syn N (1992) High resolution 13C-n.m.r. spectroscopy of ‘mixed linkage’ xylans. Int J Biol Macromol 14:29–32CrossRefGoogle Scholar
  48. Mayhew TM, Griffiths G, Lucocq JM (2004) Applications of an efficient method for comparing immunogold labelling patterns in the same sets of compartments in different groups of cells. Histochem Cell Biol 122:171–177.  https://doi.org/10.1007/s00418-004-0685-x CrossRefGoogle Scholar
  49. McLean BW, Boraston AB, Brouwer D et al (2002) Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem 277:50245–50254.  https://doi.org/10.1074/jbc.M204433200 CrossRefGoogle Scholar
  50. Morrison IM (1988) Hydrolysis of plant cell walls with trifluoroacetic acid. Phytochemistry 27:1097–1100CrossRefGoogle Scholar
  51. Morrison JC, Greve LC, Richmond PA (1993) Cell wall synthesis during growth and maturation of Nitella internodal cells. Planta 189:321–328.  https://doi.org/10.1007/BF00194428 CrossRefGoogle Scholar
  52. Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257.  https://doi.org/10.1016/j.pbi.2008.03.007 CrossRefGoogle Scholar
  53. Myers A, Preston RD (1959) Fine structure in the red algae. III. A general survey of cell-wall structure in the red algae. Proc R Soc Lond Ser B Biol Sci.  https://doi.org/10.1098/rspb.1959.0034 CrossRefGoogle Scholar
  54. Navarro DA, Stortz CA (2002) Isolation of xylogalactans from the Corallinales: influence of the extraction method on yields and compositions. Carbohydr Polym 49:57–62CrossRefGoogle Scholar
  55. Niklas KJ (2004) The cell walls that bind the tree of life. BioScience 54:831.  https://doi.org/10.1641/0006-3568(2004)054%5b0831:tcwtbt%5d2.0.co;2 CrossRefGoogle Scholar
  56. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249.  https://doi.org/10.1007/s10086-009-1029-1 CrossRefGoogle Scholar
  57. Patterson MR, Harwell MC, Orth LM, Orth RJ (2001) Biomechanical properties of the reproductive shoots of eelgrass. Aquat Bot 69:27–40CrossRefGoogle Scholar
  58. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513.  https://doi.org/10.1104/pp.010816 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77:288–295.  https://doi.org/10.1016/j.compstruct.2005.07.023 CrossRefGoogle Scholar
  60. Ruel K, Chabannes M, Boudet A-M et al (2001) Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly. Phytochemistry 57:875–882.  https://doi.org/10.1016/S0031-9422(01)00118-2 CrossRefGoogle Scholar
  61. Ruel K, Nishiyama Y, Joseleau J-P (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61.  https://doi.org/10.1016/j.plantsci.2012.05.008 CrossRefGoogle Scholar
  62. Rydahl MG, Fangel JU, Mikkelsen MD et al (2015) Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells. Methods Mol Biol 1242:1–21.  https://doi.org/10.1007/978-1-4939-1902-4_1 CrossRefGoogle Scholar
  63. Salmén L (2015) Wood morphology and properties from molecular perspectives. Ann For Sci 72:679–684.  https://doi.org/10.1007/s13595-014-0403-3 CrossRefGoogle Scholar
  64. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST action E35 2004–2008: wood machining—micromechanics and fracture. Holzforschung.  https://doi.org/10.1515/hf.2009.011 CrossRefGoogle Scholar
  65. Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21.  https://doi.org/10.1093/aob/mci155 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sethaphong L, Haigler CH, Kubicki JD et al (2013) Tertiary model of a plant cellulose synthase. Proc Natl Acad Sci USA 110:7512–7517.  https://doi.org/10.1073/pnas.1301027110 CrossRefGoogle Scholar
  67. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78.  https://doi.org/10.1146/annurev.cellbio.22.022206.160206 CrossRefGoogle Scholar
  68. Somerville C, Bauer S, Brininstool G et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211.  https://doi.org/10.1126/science.1102765 CrossRefGoogle Scholar
  69. Stevenson TT, Furneaux RH (1991) Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr Res 210:277–298CrossRefGoogle Scholar
  70. Stortz CA, Cerezo AS (2000) Novel findings in carrageenans, agaroids and “hybrids”red seaweed galactans. Curr Top Phytochem 4:121–134Google Scholar
  71. Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124:1493–1506CrossRefPubMedGoogle Scholar
  72. Takano R, Hayashi J, Hayashi K, Hara S, Hirase S (1996) Structure of a water-soluble polysaccharide sulfate from the red seaweed Joculator maximus Manza. Bot Mar 39:95–102CrossRefGoogle Scholar
  73. Thomas LH, Forsyth VT, Sturcova A et al (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476.  https://doi.org/10.1104/pp.112.206359 CrossRefGoogle Scholar
  74. Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655.  https://doi.org/10.1046/j.1529-8817.1999.3540635.x CrossRefGoogle Scholar
  75. Tsekos I, Reiss HD, Schnepf E (1993) Cell-wall structure and supramolecular organization of the plasma membrane of marine red algae visualized by freeze fracture. Acta Botanica Neerlandica 42:119–132CrossRefGoogle Scholar
  76. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701PubMedPubMedCentralGoogle Scholar
  77. Usov AI, Bilan MI (1996) Polysaccharides from algae. 49. Isolation of alginic acid, sulfated xylogalactan and floridean starch from calcareous red alga Bossiella cretacea (P. et R.) Johansen (Rhodophyta, Corallinaceae). Bioorg Khim 22:126–133Google Scholar
  78. Usov AI, Bilan MI, Shashkov AS (1997) Structure of a sulfated xylogalactan from the calcareous red alga Corallina pilulifera P. et R. (Rhodophyta, Corallinaceae). Carbohydr Res 303:93–102CrossRefGoogle Scholar
  79. Voiniciuc C, Pauly M, Usadel B (2018) Monitoring polysaccharide dynamics in the plant cell wall. Plant Physiol 176:2590–2600.  https://doi.org/10.1104/pp.17.01776 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Waaland SD, Waaland JR (1975) Analysis of cell elongation in red algae by fluorescent labelling. Planta 126:127–138CrossRefGoogle Scholar
  81. Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660CrossRefGoogle Scholar
  82. Yamaguchi M, Mitsuda N, Ohtani M et al (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66:579–590.  https://doi.org/10.1111/j.1365-313X.2011.04514.x CrossRefPubMedGoogle Scholar
  83. Yoon HS, Hackett JD, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biodiversity Research CentreUniversity of British ColumbiaVancouverCanada
  2. 2.Botany DepartmentUniversity of British ColumbiaVancouverCanada
  3. 3.E.I. LINK-ConseilLe CheylasFrance
  4. 4.Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET)Buenos AiresArgentina
  5. 5.Centro de Biotecnología Vegetal, Facultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile

Personalised recommendations