Skip to main content
Log in

Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Nitric oxide increased lettuce’s tolerance to salinity by restoring its hormonal balance, consequently reducing Na + accumulation and activating defense mechanisms that allowed the attenuation of ionic, oxidative, and osmotic stresses.

Abstract

Agricultural crops are continually threatened by soil salinity. The plant’s ability to tolerate soil salinity can be increased by treatment with the signaling molecule nitric oxide (NO). Involvement of NO in plant metabolism and its interactions with phytohormones have not been fully described, so knowledge about the role of this radical in signaling pathways remains fragmented. In this work, Lactuca sativa (lettuce) plants were subjected to four treatments: (1) control (nutrient solution); (2) SNP [nutrient solution containing 70 μM sodium nitroprusside (SNP), an NO donor]; (3) NaCl (nutrient solution containing 80 mM NaCl); or (4) SNP + NaCl (nutrient solution containing SNP and NaCl). The plants were exposed to these conditions for 24 h, and then, the roots and leaves were collected and used to evaluate biochemical parameters (reactive oxygen species (ROS) production, cell membrane damage, cell death, antioxidant enzymes activities, and proline concentration), physiological parameters (pigments’ concentration and gas-exchange measurements), and phytohormone content. To evaluate growth, tolerance index, and nutrient concentration, the plants were exposed to the treatments for 3 days. L sativa exposure to NaCl triggered ionic, osmotic, and oxidative stress, which resulted in hormone imbalance, cell death, and decreased growth. These deleterious changes were correlated with Na+ content in the vegetative tissues. Adding NO decreased Na+ accumulation and stabilized the mineral nutrient concentration, which maintained the photosynthetic rate and re-established growth. NO-signaling action also re-established the phytohormones balance and resulted in antioxidant system activation and osmotic regulation, with consequent increase in plants tolerance to the salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adnan MY, Hussain T, Asrar H et al (2016) Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora 225:1–9

    Article  Google Scholar 

  • Akladious SA, Mohamed HI (2018) Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic 236:244–250

    Article  CAS  Google Scholar 

  • Ali Q, Daud MK, Zulqurnain M et al (2017) Plant physiology and biochemistry seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem 119:50–58

    Article  CAS  PubMed  Google Scholar 

  • Amin L, Gausmian MH, Zulkifli F (2014) Determinants of public attitudes to genetically modified. PloS One 9(1):e86174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H et al (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E et al (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay aplicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiao Q, Wu F et al (2010) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30:1570–1585

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiong D-Y, Wang W-H et al (2013) Nitric Oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS One 8:71543

    Article  CAS  Google Scholar 

  • Clark RB (1975) Characterization of phosphatase of intact maize roots. J Agric Food Chem 23:458–460

    Article  CAS  PubMed  Google Scholar 

  • Da-Silva CJ, Modolo LV (2018) Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Bot Bras 32(1):150–160

    Article  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB et al (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  CAS  PubMed  Google Scholar 

  • Dou L, He K, Higaki T et al (2018) Ethylene signaling modulates cortical microtubule reassembly in response to salt stress. Plant Physiol 176:2071–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Zhang W, Li B et al (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Du C (2012) Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. J Am Soc Hortic Sci 137:127–133

    Article  CAS  Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V et al (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas VS, de Miranda RS, Costa JH et al (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot 145:75–86

    Article  CAS  Google Scholar 

  • Gadelha CG, de Miranda RS, Alencar NLM et al (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  CAS  PubMed  Google Scholar 

  • Gay C, Gebicki JM (2000) A critical evalution of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284:217–220

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase in higher plants. J Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Hadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35:2037–2054

    Article  CAS  Google Scholar 

  • Havir EA, Mchale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hniličková H, Hnilička F, Martinkova J, Kraus K (2017) Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ 63:1–8

    Article  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity : a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Huang RD (2018) Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J Integr Agric 17:739–746

    Article  CAS  Google Scholar 

  • Huang Z, Zhao L, Chen D et al (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8:e62085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt R (1978) Demography versus plant growth analysis. New Phytol 80:269–272

    Article  Google Scholar 

  • Jiménez-Arias D, García-Machado FJ, Morales-Sierra S et al (2019) Menadione sodium bisulphite (MSB): beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants. Environ Exp Bot 157:161–170

    Article  CAS  Google Scholar 

  • Kato Y, Miura E, Matsushima R, Sakamoto W (2007) White leaf sectors in yellow variegated are formed by viable cells with undifferentiated plastids. Plant Physiol 144:952–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Jeong H, Jeon J, Bae S (2016) Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water 8:1–9

    Google Scholar 

  • Kim Y, Mun BG, Khan AL et al (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One 13:1–20

    Google Scholar 

  • Klein A, Hüsselmann L, Keyster M, Ludidi N (2018) Exogenous nitric oxide limits salt-induced oxidative damage in maize by altering superoxide dismutase activity. S Afr J Bot 115:44–49

    Article  CAS  Google Scholar 

  • Koksal N, Alkan-Torun A, Kulahlioglu I et al (2016) Ion uptake of marigold under saline growth conditions. SpringerPlus 5:1–12

    Article  CAS  Google Scholar 

  • Kumar J, Singh S, Singh M et al (2017) Transcriptional regulation of salinity stress in plants: a short review. Plant Gene 11:160–169

    Article  CAS  Google Scholar 

  • Kuo MC, Kao CH (2003) Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biol Plant 46:149–152

    Article  CAS  Google Scholar 

  • Latowski D, Kuczyńska P, Strzałka K (2011) Xanthophyll cycle- a mechanism protecting plants against oxidative stress. Red Rep 16:78–90

    Article  CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Du H, Wang K et al (2011) Differential photosynthetic responses to salinity stress between two perennial grass species contrasting in salinity tolerance. HortSci 46:311–316

    Article  CAS  Google Scholar 

  • Liu W, Li RJ, Han TT et al (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llanes A, Varela C, Luna V (2016) Crosstalk between gibberellins and abscisic acid under drought and salinity. In: Singh VP, Singh S, Prasad SM (eds) Mechanisms behind phytohormonal signalling and crop abiotic stress tolerance. Nova Science Pub, pp 1–10

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Marin AR, Pezeshki SR, Masscheleyn PH, Choi HS (1993) Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic and photosynthesis in rice plants. J Plant Nutr 16:865–880

    Article  CAS  Google Scholar 

  • Methenni K, Ben Abdallah M, Nouairi I et al (2018) Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Sci Hortic 233:349–358

    Article  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G (2010) NO says more than ‘YES’ to salt tolerance. Plant Sig Behav 5:209–212

    Article  CAS  Google Scholar 

  • Monetti E, Kadono T, Tran D et al (2014) Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells. J Exp Bot 65:1361–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller M, Munné-bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbato-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nawaz F, Shabbir RN, Shahbaz M et al (2017) Cross talk between nitric oxide and phytohormones regulate plant development during abiotic stresses. In: El-Esawi MA (ed) Phytohormones: signaling mechanisms and crosstalk in plant development and stress responses. InTech, Rijeka, pp 117–141

    Google Scholar 

  • Negrão S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Nguyen HM, Sako K, Matsui A et al (2017) Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Front. Plant Sci 8:1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A et al (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front. Plant Sci. 8:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Parihar P, Singh S, Singh R et al (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Patel PR, Kajal S, Patel VR et al (2012) Impact of salt stress on nutrient uptake and growth of cowpea. Braz Soc Plant Physiol 22:43–48

    Article  Google Scholar 

  • Peixoto PHP, Cambraia J, Sant’ana R et al (1999) Aluminum effects on lipid peroxidation and on activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg 11:137–143

    CAS  Google Scholar 

  • Perin EC, da Silva Messias R, Borowski JM et al (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526

    Article  CAS  PubMed  Google Scholar 

  • Pimentel C, Sarr B, Diouf O et al (2002) Tolerância protoplasmática foliar à seca, em dois genótipos de caupi cultivados em campo. Rev Univ Rural 22:07–14

    Google Scholar 

  • Prerostova S, Dobrev PI, Gaudinova A et al (2017) Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci 264:188–198

    Article  CAS  PubMed  Google Scholar 

  • Rasool S, Hameed A, Azooz MM et al (2013) Salt stress: causes, types and responses of plants. Ecophysiology and responses of plants under salt stress. Springer, New York

    Google Scholar 

  • Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). S Afr J Bot 73:623–631

    Article  CAS  Google Scholar 

  • Ruan H, Shen W, Ye M, Xu L (2002) Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum L.) leaves. Chinese Sci Bull 47:677–681

    Article  CAS  Google Scholar 

  • Saddhe AA, Malvankar MR, Karle SB, Kumar K (2018) Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants. Environ Exp, Bot

    Google Scholar 

  • Sami F, Faizan M, Faraz A (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K et al (2018a) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Pramanik K, Mitra S et al (2018b) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol 231:434–442

    Article  CAS  PubMed  Google Scholar 

  • Shakar M, Yaseen M, Mahmood R, Ahmad I (2016) Calcium carbide induced ethylene modulate biochemical profile of Cucumis sativus at seed germination stage to alleviate salt stress. Sci Hortic 213:179–185

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Swapnil P, Yadav AK, Srivastav S et al (2017) Biphasic ROS accumulation and programmed cell death in a yanobacterium exposed to salinity (NaCl and Na2SO4). Algal Res 23:88–95

    Article  Google Scholar 

  • Taïbi K, Taïbi F, Ait Abderrahim L (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Tao JJ, Chen HW, Ma B (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6(1059):1–12

    Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633

    Article  CAS  Google Scholar 

  • Win KT, Fukuyo T, Keiki O, Ohwaki Y (2018) The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 127:599–607

    Article  CAS  PubMed  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6:215–225

    Article  Google Scholar 

  • Yin J, Jia J, Lian Z et al (2019) Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol Environ Saf 169:8–17

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Herbst R, Forreiter C, Schubert S (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9:4209–4220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the following Brazilian agencies: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig), Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We are also greatful to the Núcleo de Análise de Biomoléculas of the Universidade Federal de Viçosa for providing the facilities for the conduction of the experiments and to Instituto Federal Goiano for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraci A. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, F.V., Oliveira, J.A., Pereira, M.G. et al. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta 250, 1475–1489 (2019). https://doi.org/10.1007/s00425-019-03236-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03236-w

Keywords

Navigation