Advertisement

Planta

, Volume 250, Issue 1, pp 319–332 | Cite as

Involvement of aquaporins on nitrogen-acquisition strategies of juvenile and adult plants of an epiphytic tank-forming bromeliad

  • Alejandra MatizEmail author
  • Camila Aguetoni Cambuí
  • Nicolas Richet
  • Paulo Tamaso Mioto
  • Fernando Gomes
  • Filipe Christian Pikart
  • François Chaumont
  • Marília Gaspar
  • Helenice Mercier
Original Article
  • 162 Downloads

Abstract

Main conclusion

Depending on the N source and plant ontogenetic state, the epiphytic tank-forming bromeliad Vriesea gigantea can modulate aquaporin expression to maximize the absorption of the most available nitrogen source.

Abstract

Epiphytic bromeliads frequently present a structure formed by the overlapping of leaf bases where water and nutrients can be accumulated and absorbed, called tank. However, this structure is not present during the juvenile ontogenetic phase, leading to differences in nutrient acquisition strategies. Recent studies have shown a high capacity of the bromeliad Vriesea gigantea, an epiphytic tank-forming bromeliad, to absorb urea by their leaves. Since plant aquaporins can facilitate the diffusion of urea through the membranes, we cloned three foliar aquaporin genes, VgPIP1;1, VgPIP1;2 and VgTIP2;1 from V. gigantea plants. Through functional studies, we observed that besides water, VgTIP2;1 was capable of transporting urea while VgPIP1;2 may facilitate ammonium/ammonia diffusion. Moreover, aiming at identifying urea and ammonium-induced changes in aquaporin expression in leaves of juvenile and adult-tank plants, we showed that VgPIP1;1 and VgPIP1;2 transcripts were up-regulated in response to either urea or ammonium only in juvenile plants, while VgTIP2;1 was up-regulated in response to urea only in adult-tank plants. Thereby, an ontogenetic shift from juvenile to adult-tank-forming-plant appears to occur with metabolic changes regarding nitrogen metabolism regulation. Investigating urea metabolism in wild species that naturally cope with organic N sources, such as V. gigantea, may provide the knowledge to modify nitrogen use efficiency of crop plants.

Keywords

Ammonium/ammonia diffusion Epiphytic bromeliads MIPs Urea transport Vriesea gigantea 

Abbreviations

MIPs

Major intrinsic proteins

PIPs

Plasma membrane intrinsic proteins

TIPs

Tonoplast intrinsic proteins

NPA

Asparagine–proline–alanine motif

FPs

Froger’s positions

Pf

Osmotic water permeability coefficient

Notes

Acknowledgements

We are grateful to São Paulo Research Foundation (FAPESP) for the financial funding awarded to Alejandra Matiz (Grant number 2013/09097-7) and Helenice Mercier (Grant number 2011/50637-0) and to the National Council of Technological and Scientific Development (CNPq) (Grant numbers 306431/2010-6 and 309504/2014-7). Nicolas Richet and François Chaumont were supported by grants from the Belgian National Fund for Scientific Research (FNRS).

Supplementary material

425_2019_3174_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)
425_2019_3174_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 kb)
425_2019_3174_MOESM3_ESM.docx (1 mb)
Supplementary material 3 (DOCX 1050 kb)
425_2019_3174_MOESM4_ESM.docx (1.6 mb)
Supplementary material 4 (DOCX 1612 kb)
425_2019_3174_MOESM5_ESM.docx (132 kb)
Supplementary material 5 (DOCX 131 kb)

References

  1. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511565175 CrossRefGoogle Scholar
  2. Benzing DH, Renfrow A (1974) The mineral nutrition of Bromeliaceae. Bot Gaz 135:281–288CrossRefGoogle Scholar
  3. Bertl A, Kaldenhoff R (2007) Function of a separate NH3-pore in aquaporin TIP2;2 from wheat. FEBS Lett 581:5413–5417.  https://doi.org/10.1016/j.febslet.2007.10.034 CrossRefPubMedGoogle Scholar
  4. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570.  https://doi.org/10.1046/j.1365-313X.1999.00474.x CrossRefPubMedGoogle Scholar
  5. Bienert JP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317.  https://doi.org/10.1111/j.1365-313X.2011.04496.x CrossRefPubMedGoogle Scholar
  6. Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T (2005) PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot 56:113–121.  https://doi.org/10.1093/jxb/eri009 CrossRefPubMedGoogle Scholar
  7. Cambui CA, Gaspar M, Mercier H (2009) Detection of urease in the cell wall and membranes from leaf tissues of bromeliad species. Physiol Plant 136:86–93.  https://doi.org/10.1111/j.1399-3054.2009.01217.x CrossRefGoogle Scholar
  8. Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260.  https://doi.org/10.1146/annurev.es.11.110180.001313 CrossRefGoogle Scholar
  9. Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034.  https://doi.org/10.1104/pp.122.4.1025 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215.  https://doi.org/10.1104/pp.125.3.1206 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469.  https://doi.org/10.1093/nar/gkn180 CrossRefGoogle Scholar
  12. Dynowski M, Mayer M, Moran O, Ludewig U (2008) Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Lett 582:2458–2462.  https://doi.org/10.1016/j.febslet.2008.06.012 CrossRefPubMedGoogle Scholar
  13. Endres L, Mercier H (2001) Influence of nitrogen forms on the growth and nitrogen metabolism of bromeliads. J Plant Nutr 24:29–42.  https://doi.org/10.1081/PLN-100000310 CrossRefGoogle Scholar
  14. Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228.  https://doi.org/10.1105/tpc.017194 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Froger A, Tallur B, Thomas D, Delamarche C (1998) Prediction of functional residues in water channels and related proteins. Protein Sci 7:1458–1468.  https://doi.org/10.1002/pro.5560070623 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gaspar M, Bousser A, Sissoëff I, Roche O, Hoarau J, Mahe A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31.  https://doi.org/10.1016/S0168-9452(03)00117-1 CrossRefGoogle Scholar
  17. Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic tips to the tonoplast and plasma membrane. Mol Plant 4:180–189.  https://doi.org/10.1093/mp/ssq051 CrossRefPubMedGoogle Scholar
  18. Goldberg T, Hamp T, Rost B (2012) LocTree2 predicts localization for all domains of life. Bioinformatics 28:i458–i465.  https://doi.org/10.1093/bioinformatics/bts390 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goldberg T, Hecht M, Hamp T et al (2014) LocTree3 prediction of localization. Nucleic Acids Res 42:W350–W355.  https://doi.org/10.1093/nar/gku396 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gonçalves AZ, Oliveira RS, Oliveira PS, Romero GQ (2016a) Species-specific effects of ant inhabitants on bromeliad nutrition. PLoS ONE 11:e0152113.  https://doi.org/10.1371/journal.pone.0152113 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gonçalves AZ, Mercier H, Oliveira RS, Romero GQ (2016b) Trade-off between soluble protein production and nutritional storage in Bromeliaceae. Ann Bot 118:1199–1208.  https://doi.org/10.1093/aob/mcw174 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gu R, Chen X, Zhou Y, Yuan L (2012) Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport. BMB Rep 45:96–101.  https://doi.org/10.5483/BMBRep.2012.45.2.96 CrossRefPubMedGoogle Scholar
  23. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hamann T, Moller BL (2007) Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Express Purif 56:121–127.  https://doi.org/10.1016/j.pep.2007.06.007 CrossRefGoogle Scholar
  25. Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804.  https://doi.org/10.1111/j.1365-313X.2011.04634.x CrossRefPubMedGoogle Scholar
  26. Heinen RB, Bienert GP, Cohen D, Chevalier AS, Uehlein N, Hachez C, Kaldenhoff R, Le Thiec D, Chaumont F (2014) Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. Plant Mol Biol 86:335–350.  https://doi.org/10.1007/s11103-014-0232-7 CrossRefPubMedGoogle Scholar
  27. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19.  https://doi.org/10.1186/gb-2007-8-2-r19 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environ 22:1435–1443.  https://doi.org/10.1046/j.1365-3040.1999.00502.x CrossRefGoogle Scholar
  29. Holm LM, Jahn TP, Møller ALB, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflüg Arch Eur J Physiol 450:415–428.  https://doi.org/10.1007/s00424-005-1399-1 CrossRefGoogle Scholar
  30. Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75:413–430.  https://doi.org/10.1007/s11103-011-9737-5 CrossRefPubMedGoogle Scholar
  31. Inselsbacher E, Cambuí CA, Richter A, Stange CF, Mercier H, Wanek W (2007) Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytol 175:311–320.  https://doi.org/10.1111/j.1469-8137.2007.02098.x CrossRefPubMedGoogle Scholar
  32. Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36.  https://doi.org/10.1016/j.febslet.2004.08.004 CrossRefPubMedGoogle Scholar
  33. Jozefkowicz C, Sigaut L, Scochera F, Soto G, Ayub N, Pietrasanta LI, Amodeo G, González-Flecha FL, Alleva K (2016) PIP water transport and its pH dependence are regulated by tetramer stoichiometry. Biophys J 110:1312–1321.  https://doi.org/10.1016/j.bpj.2016.01.026 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kirscht A, Kaptan SS, Bienert KP, Chaumont F, Nissen P, De Groot BL, Kjellbom P, Gourdon P, Johanson U (2016) Crystal structure of an ammonia-permeable aquaporin. PLoS Biol 14:e1002411.  https://doi.org/10.1371/journal.pbio.1002411 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kleingesinds CK, Gobara BNK, Mancilha D, Rodrigues MA, Demarco D, Mercier H (2018) Impact of tank formation on distribution and cellular organization of trichomes within Guzmania monostachia rosette. Flora 243:11–18.  https://doi.org/10.1016/j.flora.2018.03.013 CrossRefGoogle Scholar
  36. Knudson L (1946) A new nutrient solution for orchid seed. Am Orchid Soc Bull 15:214–217Google Scholar
  37. Laube S, Zotz G (2003) Which abiotic factors limit vegetative growth in a vascular epiphyte? Funct Ecol 17:598–604.  https://doi.org/10.1046/j.1365-2435.2003.00760.x CrossRefGoogle Scholar
  38. Leroy C, Carrias JF, Corbara B, Pélozuelo L, Dézerald O, Brouard O, Dejean A, Céréghino R (2013) Mutualistic ants contribute to tank-bromeliad nutrition. Ann Bot Lond 112:919–926.  https://doi.org/10.1093/aob/mct147 CrossRefGoogle Scholar
  39. Leroy C, Carrias JF, Céréghino R, Corbara B (2016) The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. J Plant Ecol 9:241–255.  https://doi.org/10.1093/jpe/rtv052 CrossRefGoogle Scholar
  40. Liu LH, Ludewig U, Gassert B, Frommer WB, Von Wirén N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228.  https://doi.org/10.1104/pp.103.027409 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293.  https://doi.org/10.1128/MCB.17.8.4282 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Matiz A, Mioto PT, Mayorga AY, Freschi L, Mercier H (2013) CAM photosynthesis in bromeliads and agaves: what can we learn from these plants? In: Dubinsky Z (ed) photosynthesis. InThec, Colima, pp 91–134.  https://doi.org/10.5772/56219 CrossRefGoogle Scholar
  43. Matiz A, Mioto PT, Aidar MPM, Mercier H (2017) Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen source. Biol Plant 61:751–762.  https://doi.org/10.1007/s10535-017-0721-z CrossRefGoogle Scholar
  44. Mioto P, Mercier H (2013) Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. J Plant Physiol 170:996–1002.  https://doi.org/10.1016/j.jplph.2013.02.004 CrossRefPubMedGoogle Scholar
  45. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–479.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  46. Nour-Eldin HH, Hansen BG, Norholm MH, Jensen JK, Halkier BA (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34:e122.  https://doi.org/10.1093/nar/gkl635 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ohrui T, Nobira H, Sakata Y, Taji T, Yamamoto C, Nishida K, Yamakawa T, Sasuga Y, Yaguchi Y, Takenaga H, Tanaka S (2007) Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta 227:47–56.  https://doi.org/10.1007/s00425-007-0593-0 CrossRefPubMedGoogle Scholar
  48. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotech Lett 26:509–515.  https://doi.org/10.1023/B:BILE.0000019559.84305.47 CrossRefGoogle Scholar
  49. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387.  https://doi.org/10.1126/science.256.5055.385 CrossRefPubMedGoogle Scholar
  50. Rodrigues MA, Hamachi L, Mioto PT, Purgatto E, Mercier H (2016) Implications of leaf ontogeny on drought-induced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia. Plant Physiol Biochem 108:400–411.  https://doi.org/10.1016/j.plaphy.2016.08.010 CrossRefPubMedGoogle Scholar
  51. Romero GQ, Vasconcellos-Neto J, Trivelin PCO (2008) Spatial variation in the strength of mutualism between a jumping spider and a terrestrial bromeliad: evidence from the stable isotope 15N. Acta Oecol 33:380–386.  https://doi.org/10.1016/j.actao.2008.02.001 CrossRefGoogle Scholar
  52. Romero GQ, Nomura F, Gonçalves AZ, Dias NYN, Mercier H, EdeC Conforto, DdeC Rossa-Feres (2010) Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. Oecologia 162:941–949.  https://doi.org/10.1007/s00442-009-1533-4 CrossRefPubMedGoogle Scholar
  53. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45.  https://doi.org/10.1093/nar/gkp045 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  55. Sayers LG, Miyawaki A, Muto A, Takeshita H, Yamamoto A, Michikawa T, Furuichi T, Mikoshiba K (1997) Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor–green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation. Biochem J 323:273–280.  https://doi.org/10.1042/bj3230273 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Slinker BK (1998) The statistics of synergism. J Mol Cell Cardiol 30:723–731.  https://doi.org/10.1006/jmcc.1998.0655 CrossRefPubMedGoogle Scholar
  57. Stewart GR, Schmidt S, Handley LL, Turnbull MH, Erskine PD, Joly CA (1995) 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant Cell Environ 18:85–90.  https://doi.org/10.1111/j.1365-3040.1995.tb00547.x CrossRefGoogle Scholar
  58. Takahashi CA, Mercier H (2011) Nitrogen metabolism in leaves of a tank epiphytic bromeliad: characterization of a spatial and functional division. J Plant Physiol 168:1208–1216.  https://doi.org/10.1016/j.jplph.2011.01.008 CrossRefPubMedGoogle Scholar
  59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35:1077–1083.  https://doi.org/10.1111/j.1365-3040.2011.02473.x CrossRefPubMedGoogle Scholar
  61. Wang WH, Köhler B, Cao FQ, Liu LH (2008) Molecular and physiological aspects of urea transport in higher plants. Plant Sci 175:467–477.  https://doi.org/10.1016/j.plantsci.2008.05.018 CrossRefGoogle Scholar
  62. Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77:109–151.  https://doi.org/10.1007/s12229-010-9062-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alejandra Matiz
    • 1
    Email author
  • Camila Aguetoni Cambuí
    • 1
  • Nicolas Richet
    • 2
  • Paulo Tamaso Mioto
    • 4
  • Fernando Gomes
    • 3
  • Filipe Christian Pikart
    • 1
  • François Chaumont
    • 2
  • Marília Gaspar
    • 5
  • Helenice Mercier
    • 1
  1. 1.Department of Botany, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  2. 2.Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain-la-NeuveBelgium
  3. 3.Department of Genetics and Evolutionary Biology, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  4. 4.Department of Botany, Biological Sciences CenterFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Department of Plant Physiology and BiochemistryInstitute of BotanySão PauloBrazil

Personalised recommendations