, Volume 250, Issue 1, pp 95–104 | Cite as

A strategy for developing high-resolution DNA barcodes for species discrimination of wood specimens using the complete chloroplast genome of three Pterocarpus species

  • Lichao Jiao
  • Yang Lu
  • Tuo He
  • Jianing Li
  • Yafang YinEmail author
Original Article


Main conclusion

A method for extraction of wood DNA and a strategy for designing high-resolution barcodes for wood were developed. Ycf1b was the prioritized barcode to resolve the Pterocarpus wood species studied.

DNA barcoding, an effective tool for wood species identification, mainly focuses on universal barcodes and often lacks high resolution to differentiate species, especially for closely related taxa within the same genus. Therefore, more highly informative DNA barcodes need to be identified. This study is the first to report a strategy for developing specific DNA barcodes of wood tissues. The complete chloroplast genomes of leaf samples of three Pterocarpus species, i.e., P. indicus, P. santalinus, and P. tinctorius, were sequenced, and thereafter, the most variable DNA regions were identified on the scale of the complete chloroplast genomes. Finally, wood DNA was extracted from 30 wood specimens of the three Pterocarpus species, and DNA recovery rates of the selected regions were tested for applicability to verification on the wood specimens studied. The seven regions with the most variation (rpl32-ccsA, rpl20-clpP, trnC-rpoB, ycf1b, accD-ycf4, ycf1a, and psbK-accD) were identified from the chloroplast genome by quantifying nucleotide diversity (Pi > 0.02), which was remarkably higher than that of the plant universal barcodes (rbcL, matK, and trnH-psbA) and the previously reported barcodes (ndhF-rpl32 and trnL-F) used for phylogenetic analysis in Pterocarpus. After comprehensive evaluation of species discrimination ability and applicability, the ycf1b region performed well in terms of the recovery success rate (76.7%) and species identification (100%) for wood specimens of the three Pterocarpus species, and was identified as the preferred high-resolution chloroplast barcode for selected Pterocarpus species. It will offer technical support for curbing illegal timber harvesting activities and for conserving endangered and valuable wood species.


Comparative genomics DNA extraction Specific barcode Timber identification Wood anatomy Ycf1b 



Large single copy


Small single copy



This work was supported financially by the Fundamental Research Funds of CAF (Grant No. CAFYBB2017MA013), the National Natural Science Foundation of China (Grant No. 31600451), and the National High-level Talents Special Support Plan (Ten-Thousand Talents Program) of China (No. W02020331). We would like to express our gratitude to Professor Shiliang Zhou, Dr. Chao Xu, and Dr. Wenpan Dong of the Institute of Botany, Chinese Academy of Science for technical support with chloroplast genome sequencing, and Mr. Changyu Xu and postgraduate student Qiongqiong Li for assistance with collecting samples.

Supplementary material

425_2019_3150_MOESM1_ESM.docx (136 kb)
Supplementary material 1 (DOCX 135 kb)
425_2019_3150_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)
425_2019_3150_MOESM3_ESM.xlsx (10 kb)
Supplementary material 3 (XLSX 9 kb)
425_2019_3150_MOESM4_ESM.xlsx (12 kb)
Supplementary material 4 (XLSX 12 kb)
425_2019_3150_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 10 kb)


  1. Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD, Lockhart PJ (2012) Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol 4(12):1316PubMedPubMedCentralGoogle Scholar
  2. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477PubMedPubMedCentralGoogle Scholar
  3. Bi Y, Zhang M, Xue J, Dong R, Du Y, Zhang X (2018) Chloroplast genomic resources for phylogeny and DNA barcoding: a case study on Fritillaria. Sci Rep 8:1184PubMedPubMedCentralGoogle Scholar
  4. Cano RJ (1996) Analysing ancient DNA. Endeavour 20:162–167PubMedGoogle Scholar
  5. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B Biol Sci 360:1889–1895Google Scholar
  6. Chen S, Yao H, Han J, Liu C, Song J, Shi L et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5(1):e8613PubMedPubMedCentralGoogle Scholar
  7. Chen J, Zhao J, Erickson DL, Xia N, Kress WJ (2015) Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Mol Ecol Resour 15(2):337–348PubMedGoogle Scholar
  8. Cowan RS, Fay MF (2012) Challenges in the DNA barcoding of plant material. Methods Mol Biol 862:23–33PubMedGoogle Scholar
  9. Deguilloux MF, Pemonge MH, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc Lond B 269:1039–1046Google Scholar
  10. Dong W, Xu C, Cheng T, Lin K, Zhou S (2013) Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol Evol 5:989–997PubMedPubMedCentralGoogle Scholar
  11. Dong W, Liu H, Xu C, Zuo Y, Chen Z, Zhou S (2014) A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC Genet 15(1):138PubMedPubMedCentralGoogle Scholar
  12. Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S et al (2015) ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5:8348PubMedPubMedCentralGoogle Scholar
  13. Dormontt EE, Boner M, Braun B, Breulmann G, Degen B, Espinoza E, Gardner S, Guillery P, Hermanson JC, Koch G, Lee SL, Kanashiro M, Rimbawanto A, Thomas D, Wiedenhoeft AC, Yin Y, Zahnen J, Lowe AJ (2015) Forensic timber identification: it’s time to integrate disciplines to combat illegal logging. Biol Conserv 191:790–798Google Scholar
  14. Gregory TR (2005) DNA barcoding does not compete with taxonomy. Nature 434:1067PubMedGoogle Scholar
  15. Hall TA (1999) A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98Google Scholar
  16. Hartvig I, Czako M, Kjær ED, Nielsen LR, Theilade I (2015) The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS One 10(9):e0138231PubMedPubMedCentralGoogle Scholar
  17. Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci USA 108(49):19451–19452PubMedGoogle Scholar
  18. Jiao L, Yin Y, Cheng Y, Jiang X (2014) DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood samples. Holzforschung 68:487–494Google Scholar
  19. Jiao L, Liu X, Jiang X, Yin Y (2015) Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification. Holzforschung 69(8):925–931Google Scholar
  20. Jiao L, Yu M, Wiedenhoeft AC, He T, Li J, Liu B, Jiang X, Yin Y (2018) DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Sci Rep 8:1945PubMedPubMedCentralGoogle Scholar
  21. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30:3059–3066PubMedPubMedCentralGoogle Scholar
  22. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMedPubMedCentralGoogle Scholar
  23. Kersten B, Rampant PF, Mader M, Paslier MCL, Bounon R, Berard A et al (2016) Genome sequences of populus tremula chloroplast and mitochondrion: implications for holistic poplar breeding. PLoS One 11(1):e0147209PubMedPubMedCentralGoogle Scholar
  24. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102(23):8369–8374PubMedGoogle Scholar
  25. Lee SY, Ng WL, Mahat MN, Nazre M, Mohamed R (2016) DNA barcoding of the endangered Aquilaria (Thymelaeaceae) and its application in species authentication of agarwood products traded in the market. PLoS One 11(4):e0154631PubMedPubMedCentralGoogle Scholar
  26. Lendvay B, Hartmann M, Brodbeck S, Nievergelt D, Reinig F, Zoller S et al (2017) Improved recovery of ancient DNA from subfossil wood-application to the world’s oldest Late Glacial pine forest. New Phytol 217(4):1737–1748PubMedGoogle Scholar
  27. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–166PubMedGoogle Scholar
  28. Li Q, Wu J, Wang Y, Lian X, Wu F, Zhou L, Huang Z, Zhu S (2017) The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung 71:939–949Google Scholar
  29. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedPubMedCentralGoogle Scholar
  30. Liu J, Provan J, Gao L, Li D (2012) Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. Int J Mol Sci 13:8740–8751PubMedPubMedCentralGoogle Scholar
  31. Liu Y, Xiang L, Zhang Y, Lai X, Xiong C, Li J et al (2018) DNA barcoding based identification of Hippophae species and authentication of commercial products by high resolution melting analysis. Food Chem 242:62–67PubMedGoogle Scholar
  32. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581PubMedPubMedCentralGoogle Scholar
  33. Lowe AJ, Dormontt EE, Bowie MJ, Degen B, Gardner S, Thomas D, Clarke C, Rimbawanto A, Wiedenhoeft A, Yin Y, Sasaki N (2016) Opportunities for improved transparency in the timber trade through scientific verification. Bioscience 66:990–998Google Scholar
  34. Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michoncoudouel S, Naquin D et al (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113(7):1197–1210PubMedPubMedCentralGoogle Scholar
  35. Ng KK, Lee SL, Tnah LH, Nurulfarhanah Z, Ng CH, Lee CT et al (2016) Forensic timber identification: a case study of a cites listed species, Gonystylus bancanus (Thymelaeaceae). Forensic Sci Int Genet 23:197–209PubMedGoogle Scholar
  36. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679PubMedGoogle Scholar
  37. Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2009) DNA from processed and unprocessed wood: factors influencing the isolation success. Forensic Sci Int Genet 3:185–192PubMedGoogle Scholar
  38. Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM et al (2011) The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PLoS One 6(7):e22275PubMedPubMedCentralGoogle Scholar
  39. Scarcelli N, Barnaud A, Eiserhardt W, Treier UA, Seveno M et al (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLoS One 6(5):e19954PubMedPubMedCentralGoogle Scholar
  40. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689PubMedPubMedCentralGoogle Scholar
  41. Schlumbaum A, Tensen M, Jaenicke-Despres V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobotany 17:23–244Google Scholar
  42. Song Y, Yao X, Liu B, Tan Y, Corlett RT (2017) Complete plastid genome sequences of three tropical Alseodaphne trees in the family Lauraceae. Holzforschung 72(4):337–345Google Scholar
  43. Srivathsan A, Meier R (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28:190–194Google Scholar
  44. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedPubMedCentralGoogle Scholar
  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882PubMedGoogle Scholar
  46. Wilson CA, Padiernos J, Sapir Y (2016) The royal irises (iris subg. iris sect. Oncocyclus): plastid and low-copy nuclear data contribute to an understanding of their phylogenetic relationships. Taxon 65(1):35–46Google Scholar
  47. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255PubMedGoogle Scholar
  48. Yu M, Jiao L, Guo J, Wiedenhoeft AC, He T, Jiang X, Yin Y (2017) DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta 246:1165–1176PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
  2. 2.Wood Collections (WOODPEDIA)Chinese Academy of ForestryBeijingChina
  3. 3.Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHainanChina

Personalised recommendations