Advertisement

Planta

pp 1–21 | Cite as

Application of genetics and biotechnology for improving medicinal plants

  • Mohsen NiazianEmail author
Review

Abstract

Main conclusion

Plant tissue culture has been used for conservation, micropropagation, and in planta overproduction of some pharma molecules of medicinal plants. New biotechnology-based breeding methods such as targeted genome editing methods are able to create custom-designed medicinal plants with different secondary metabolite profiles.

For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium-mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.

Keywords

Bio-product Biotechnology Genome editing Metabolic engineering Plant synthetic biology Tissue culture 

Abbreviations

CENH3

Centromere-specific histone H3

COSTREL

Combinatorial supertransformation of transplastomic recipient lines

CRISPR

Clustered regularly interspaced short palindromic repeats

Cas

CRISPR-associated

DSBs

Double-strand breaks

GM

Genetically modified

GWAS

Genome-wide association

HPLC

High-performance liquid chromatography

NGS

Next-generation sequencing

PTC

Plant tissue culture

PGRs

Plant growth regulators

QTL

Quantitative trait loci

sgRNA

Single-guide RNA

TALENs

Transcription activator-like effector nucleases

TILLING

Targeting-induced local lesions in genomes

ZFNs

Zinc-finger nucleases

Notes

Acknowledgements

The author is thankful to Ms. Shokoofeh Nourozi for her kind help in preparing the figures of the manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflicts of interest to disclose.

Ethical standards

There is no ethical standard related to the present review article.

Supplementary material

425_2019_3099_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 40 kb)

References

  1. Abdipour M, Ramazani SHR, Younessi-Hmazekhanlu M, Niazian M (2018) Modeling oil content of sesame (Sesamum indicum L.) using artificial neural network and multiple linear regression approaches. J Am Oil Chem Soc 95:283–297.  https://doi.org/10.1002/aocs.12027 CrossRefGoogle Scholar
  2. Ahmadi-Sakha S, Sharifi M, Niknam V, Ahmadian-Chashmi N (2018) Phenolic compounds profiling in shake flask and bioreactor system cell cultures of Scrophularia striata Boiss. Vitro Cell Dev Biol Plant 54:444–453.  https://doi.org/10.1007/s11627-018-9899-9 CrossRefGoogle Scholar
  3. Ahmed MR, Anis M, Al-Etta HA (2015) Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Rend Lincei 26:133–139.  https://doi.org/10.1007/s12210-014-0366-1 CrossRefGoogle Scholar
  4. Ahuja S, Mandal BB, Dixit S, Srivastava PS (2002) Molecular, phenotypic and biosynthetic stability in Dioscorea floribunda plants derived from cryopreserved shoot tips. Plant Sci 163:971–977.  https://doi.org/10.1016/S0168-9452(02)00246-7 CrossRefGoogle Scholar
  5. Asthana P, Rai MK, Jaiswal U (2017) Somatic embryogenesis from sepal explants in Sapindus trifoliatus, a plant valuable in herbal soap industry. Ind Crop Prod 100:228–235.  https://doi.org/10.1016/j.indcrop.2017.02.034 CrossRefGoogle Scholar
  6. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614.  https://doi.org/10.1016/j.biotechadv.2015.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bahmankar M, Mortazavian SMM, Tohidfar M, Sadat Noori SA, Izadi Darbandi A, Corrado G, Rao R (2017) Chemical compositions, somatic embryogenesis, and somaclonal variation in cumin. Biomed Res Int.  https://doi.org/10.1155/2017/7283806 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z (2018) The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta.  https://doi.org/10.1007/s00425-018-2884-z CrossRefPubMedGoogle Scholar
  9. Bajaj YPS (1988) Cryopreservation and the retention of biosynthetic potential in cell cultures of medicinal and alkaloid-producing plants. In: Bajaj YPS (ed) Medicinal and aromatic plants I. Biotechnology in agriculture and forestry, vol 4. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-73026-9_8 CrossRefGoogle Scholar
  10. Bal U, Touraev A (2009) Microspore embryogenesis in selected medicinal and ornamental species of the Asteraceae. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht.  https://doi.org/10.1007/978-1-4020-8854-4_19 CrossRefGoogle Scholar
  11. Balasubramanian M, Anbumegala M, Surendran R, Arun M, Shanmugam G (2018) Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech 8:128.  https://doi.org/10.1007/s13205-018-1153-y CrossRefPubMedPubMedCentralGoogle Scholar
  12. Banerjee S (2018) Voyaging through chromosomal studies in hairy root cultures towards unravelling their relevance to medicinal plant research: an updated review. Nucleus.  https://doi.org/10.1007/s13237-018-0227-x CrossRefGoogle Scholar
  13. Baskaran P, Kumari A, Van Staden J (2015) Embryogenesis and synthetic seed production in Mondia whitei. Plant Cell Tissue Organ Cult 121:205–214.  https://doi.org/10.1007/s11240-014-0695-x CrossRefGoogle Scholar
  14. Baskaran P, Kumari A, Van Staden J (2017) Rapid propagation of Mondia whitei by embryonic cell suspension culture in vitro. S Afr J Bot 108:281–286.  https://doi.org/10.1016/j.sajb.2016.11.009 CrossRefGoogle Scholar
  15. Baskaran P, Kumari A, Van Staden J (2018a) Analysis of the effect of plant growth regulators and organic elicitors on antibacterial activity of Eucomis autumnalis and Drimia robusta ex vitro-grown biomass. Plant Growth Regul 85:143–151.  https://doi.org/10.1007/s10725-018-0380-x CrossRefGoogle Scholar
  16. Baskaran P, Kumari A, Van Staden J (2018b) In vitro propagation via organogenesis and synthetic seeds of Urginea altissima (Lf) Baker: a threatened medicinal plant. 3 Biotech.  https://doi.org/10.1007/s13205-017-1028-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bhattacharyya P, Kumaria S, Bose B, Paul P, Tandon P (2017) Evaluation of genetic stability and analysis of phytomedicinal potential in micropropagated plants of Rumex nepalensis—a medicinally important source of pharmaceutical biomolecules. J Appl Res Med Aromat Plants 6:80–91.  https://doi.org/10.1016/j.jarmap.2017.02.003 CrossRefGoogle Scholar
  18. Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357.  https://doi.org/10.3389/fpls.2016.00357 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185.  https://doi.org/10.1016/j.tibtech.2005.02.002 CrossRefPubMedGoogle Scholar
  20. Castilho CVV, Neto JFF, Leitão SG, Barreto CS, Pinto SC, da Silva NCB (2018) Anemia tomentosa var. anthriscifolia in vitro culture: sporophyte development and volatile compound profile of an aromatic fern. Plant Cell Tissue Organ Cult 133:311–323.  https://doi.org/10.1007/s11240-018-1383-z CrossRefGoogle Scholar
  21. Chahel AA, Zeng S, Yousaf Z, Liao Y, Yang Z, Wei X, Ying W (2018) Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1518-2 CrossRefGoogle Scholar
  22. Chen J, Wang L, Chen J, Huang J, Liu F, Guo R, Yang L, Grabon A, Zhao K, Kong F, Liu C (2018) Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl. Vitro Cell Dev Biol Plant.  https://doi.org/10.1007/s11627-018-9903-4 CrossRefGoogle Scholar
  23. Cordell GA (2011) Sustainable medicines and global health care. Planta Med 77:1129–1138.  https://doi.org/10.1055/s-0030-1270731 CrossRefPubMedGoogle Scholar
  24. Corrêa JPO, Vital CE, Pinheiro MVM, Batista DS, Saldanha CW, da Cruz ACF, Notini MM, Freitas DMS, DaMatta FM, Otoni WC (2016) Induced polyploidization increases 20-hydroxyecdysone content, in vitro photoautotrophic growth, and ex vitro biomass accumulation in Pfaffia glomerata (Spreng.) Pedersen. Vitro Cell Dev Biol Plant 52:45–55.  https://doi.org/10.1007/s11627-016-9746-9 CrossRefGoogle Scholar
  25. da Silva DPC, Paiva R, Herrera RC, Silva LC, Ferreira GN, dos Reis MV (2018) Somatic embryogenesis of Byrsonima intermedia A. Juss.: induction and maturation via indirect approach. Plant Cell Tissue Organ Cult 133:115–122.  https://doi.org/10.1007/s11240-017-1366-5 CrossRefGoogle Scholar
  26. Darvishi E, Kahrizi D, Bahraminejad S, Mansouri M (2016) In vitro induction of α-pinene, pulegone, menthol, menthone and limonene in cell suspension culture of pennyroyal (Mentha pulegium). Cell Mol Biol 62:7–9.  https://doi.org/10.14715/cmb/2016.62.3.2 CrossRefPubMedGoogle Scholar
  27. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510.  https://doi.org/10.1038/nrg3012 CrossRefPubMedGoogle Scholar
  28. Dehghan E, Häkkinen ST, Oksman-Caldentey KM, Ahmadi FS (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tissue Organ Cult 110:35–44.  https://doi.org/10.1007/s11240-012-0127-8 CrossRefGoogle Scholar
  29. Di W, Jiang X, Xu J, Jia M, Li B, Liu Y (2018) Stress and damage mechanisms in Dendrobium nobile Lindl. protocorm-like bodies during pre-and post-liquid nitrogen exposure in cryopreservation revealed by iTRAQ proteomic analysis. Vitro Cell Dev Biol Plant.  https://doi.org/10.1007/s11627-018-9898-x CrossRefGoogle Scholar
  30. Dixit-Sharma S, Ahuja-Ghosh S, Mandal BB, Srivastava PS (2005) Metabolic stability of plants regenerated from cryopreserved shoot tips of Dioscorea deltoidea—an endangered medicinal plant. Sci Hort 105:513–517.  https://doi.org/10.1016/j.scienta.2005.02.011 CrossRefGoogle Scholar
  31. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321.  https://doi.org/10.1016/j.cell.2006.12.006 CrossRefPubMedGoogle Scholar
  32. Ebrahimi M, Mokhtari A, Amirian R (2018) A highly efficient method for somatic embryogenesis of Kelussia odorotissima Mozaff., an endangered medicinal plant. Plant Cell Tissue Organ Cult 132:99–110.  https://doi.org/10.1007/s11240-017-1314-4 CrossRefGoogle Scholar
  33. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:1.  https://doi.org/10.1111/j.1467-7652.2009.00459.x CrossRefGoogle Scholar
  34. El-Mahrouk ME, Maamoun MK, EL-Banna AN, Omran SA, Dewir YH, El-Hendawy S (2018) In vitro gynogenesis and flow cytometry analysis of the regenerated haploids of black cumin (Nigella sativa). Hort Sci 53:681–686Google Scholar
  35. Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta.  https://doi.org/10.1007/s00425-018-2910-1 CrossRefPubMedGoogle Scholar
  36. Feng S, Song W, Fu R, Zhang H, Xu A, Li J (2018) Application of the CRISPR/Cas9 system in Dioscorea zingiberensis. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1450-5 CrossRefGoogle Scholar
  37. Fernando SC, Goodger JQ, Gutierrez SS, Johnson AA, Woodrow IE (2016) Plant regeneration through indirect organogenesis and genetic transformation of Eucalyptus polybractea RT Baker. Ind Crop Prod 86:73–78.  https://doi.org/10.1016/j.indcrop.2016.03.025 CrossRefGoogle Scholar
  38. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375.  https://doi.org/10.1016/j.tplants.2007.06.007 CrossRefPubMedGoogle Scholar
  39. Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R (2016) A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 5:e13664.  https://doi.org/10.7554/eLife.13664 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Fuentes P, Armarego-Marriott T, Bock R (2018) Plastid transformation and its application in metabolic engineering. Curr Opin Biotechnol 49:10–15.  https://doi.org/10.1016/j.copbio.2017.07.004 CrossRefPubMedGoogle Scholar
  41. Gaj T, Gersbach CA, Barbas IIICF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317.  https://doi.org/10.1007/s00425-014-2232-x CrossRefPubMedGoogle Scholar
  43. Gantait S, Kundu S, Ali N, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98.  https://doi.org/10.1007/s11738-015-1847-2 CrossRefGoogle Scholar
  44. Gantait S, Kundu S, Yeasmin L, Ali MN (2017) Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. ex Kurz. J Appl Res Med Aromat Plants 4:75–81.  https://doi.org/10.1016/j.jarmap.2017.01.005 CrossRefGoogle Scholar
  45. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857.  https://doi.org/10.1007/s00299-011-1061-7 CrossRefPubMedGoogle Scholar
  46. Ghaffarzadeh-Namazi L, Keller EJ, Senula A, Babaeian N (2017) Investigations on various methods for cryopreservation of callus of the medicinal plant Satureja spicigera. J Appl Res Med Aromat Plants 5:10–15.  https://doi.org/10.1016/j.jarmap.2016.09.003 CrossRefGoogle Scholar
  47. Grzegorczyk-Karolak I, Wiktorek-Smagur A, Hnatuszko-Konka K (2018a) An untapped resource in the spotlight of medicinal biotechnology: the genus Scutellaria. Curr Pharm Biotechnol 19:358–371.  https://doi.org/10.2174/1389201019666180626105402 CrossRefPubMedGoogle Scholar
  48. Grzegorczyk-Karolak I, Kuźma Ł, Skała E, Kiss AK (2018b) Hairy root cultures of Salvia viridis L. for production of polyphenolic compounds. Ind Crop Prod 117:235–244.  https://doi.org/10.1016/j.indcrop.2018.03.014 CrossRefGoogle Scholar
  49. Guo B, He W, Zhao Y, Wu Y, Fu Y, Guo J, Wei Y (2017) Changes in endogenous hormones and H2O2 burst during shoot organogenesis in TDZ-treated Saussurea involucrate explants. Plant Cell Tissue Organ Cult 128:1–8.  https://doi.org/10.1007/s11240-016-1069-3 CrossRefGoogle Scholar
  50. Hannweg K, Visser G, de Jager K, Bertling I (2016) In vitro-induced polyploidy and its effect on horticultural characteristics, essential oil composition and bioactivity of Tetradenia riparia. S Afr J Bot 106:186–191.  https://doi.org/10.1016/j.sajb.2016.07.013 CrossRefGoogle Scholar
  51. Haque SM, Ghosh B (2016) High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: an important cardioprotective plant. Plant Cell Tissue Organ Cult 127:71–83.  https://doi.org/10.1007/s11240-016-1030-5 CrossRefGoogle Scholar
  52. Haque SM, Ghosh B (2018) Micropropagation of Kaempferia angustifolia roscoe: an aromatic, essential oil yielding, underutilized medicinal plant of Zingiberaceae family. J Crop Sci Biotechnol 21:147–153.  https://doi.org/10.1007/s12892-017-0051-0 CrossRefGoogle Scholar
  53. Hesami M, Daneshvar MH (2018a) Indirect Organogenesis through seedling-derived leaf segments of Ficus Religiosa—a multipurpose woody medicinal plant. J Crop Sci Biotech 21:129–136.  https://doi.org/10.1007/s12892-018-0024-0 CrossRefGoogle Scholar
  54. Hesami M, Daneshvar MH (2018b) In vitro adventitious shoot regeneration through direct and indirect organogenesis from seedling-derived hypocotyl segments of Ficus religiosa L.: an important medicinal plant. Hort Sci 53:932–936.  https://doi.org/10.21273/HORTSCI13058-18 CrossRefGoogle Scholar
  55. Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M, Alizadeh M (2018a) Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments. J Genet Eng Biotech 16:175–180.  https://doi.org/10.1016/j.jgeb.2017.11.001 CrossRefGoogle Scholar
  56. Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M (2018b) An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa. J For Res.  https://doi.org/10.1007/s11676-018-0647-0 CrossRefGoogle Scholar
  57. Hoveida ZS, Abdollahi MR, Mirzaie-Asl A, Moosavi SS, Seguí-Simarro JM (2017) Production of doubled haploid plants from anther cultures of borage (Borago officinalis L.) by the application of chemical and physical stress. Plant Cell Tissue Organ Cult 130:369–378.  https://doi.org/10.1007/s11240-017-1233-4 CrossRefGoogle Scholar
  58. Howyzeh MS, Noori SAS, Shariati V, Amiripour M (2018) Comparative transcriptome analysis to identify putative genes involved in thymol biosynthesis pathway in medicinal plant Trachyspermum ammi L. Sci Rep 8:13405.  https://doi.org/10.1038/s41598-018-31618-9 CrossRefGoogle Scholar
  59. Huang P, Xu M, Xia L, Qing Z, Tang Q, Liu W, Zeng J (2017) Establishment of an efficient Agrobacterium-mediated genetic transformation method in Macleaya cordata. Sci Hort 226:302–306.  https://doi.org/10.1016/j.scienta.2017.09.004 CrossRefGoogle Scholar
  60. Iannicelli J, Elechosa MA, Juárez MA, Martínez A, Bugallo V, Bandoni AL, Escandón AS, van Baren CM (2016) Effect of polyploidization in the production of essential oils in Lippia integrifolia. Ind crop prod 81:20–29.  https://doi.org/10.1016/j.indcrop.2015.11.053 CrossRefGoogle Scholar
  61. Irshad M, Debnath B, Mitra S, Arafat Y, Li M, Sun Y, Qiu D (2018) Accumulation of anthocyanin in callus cultures of red-pod okra (Abelmoschus esculentus (L) Hongjiao) in response to light and nitrogen levels. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1397-6 CrossRefGoogle Scholar
  62. Ishkanian AS, Malloff CA, Watson SK, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36:299–303.  https://doi.org/10.1038/ng1307 CrossRefPubMedGoogle Scholar
  63. Javadian N, Karimzadeh G, Sharifi M, Moieni A, Behmanesh M (2017) In vitro polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). Planta 245:1165–1178.  https://doi.org/10.1007/s00425-017-2671-2 CrossRefPubMedGoogle Scholar
  64. Jesionek A, Kokotkiewicz A, Krolicka A, Zabiegala B, Luczkiewicz M (2018) Elicitation strategies for the improvement of essential oil content in Rhododendron tomentosum (Ledum palustre) bioreactor-grown microshoots. Ind Crop Prod 123:461–469.  https://doi.org/10.1016/j.indcrop.2018.07.013 CrossRefGoogle Scholar
  65. Jiao J, Gai QY, Wang W, Zang YP, Niu LL, Fu YJ, Wang X (2018) Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger. Ind Crop Prod 112:252–261.  https://doi.org/10.1016/j.indcrop.2017.12.017 CrossRefGoogle Scholar
  66. Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, Heidelberg, pp 123–152.  https://doi.org/10.1007/3-540-26889-8_7 CrossRefGoogle Scholar
  67. Kastell A, Schreiner M, Knorr D, Ulrichs C, Mewis I (2018) Influence of nutrient supply and elicitors on glucosinolate production in E. sativa hairy root cultures. Plant Cell Tissue Organ Cult 132:561–572.  https://doi.org/10.1007/s11240-017-1355-8 CrossRefGoogle Scholar
  68. Khan S, ur Rahman L (2017) Pathway modulation of medicinal and aromatic plants through metabolic engineering using Agrobacterium tumefaciens. In: Jha S (ed) Transgenesis and secondary metabolism. Reference series in phytochemistry. Springer, Cham, pp 431–462.  https://doi.org/10.1007/978-3-319-28669-3_15 CrossRefGoogle Scholar
  69. Khan S, Fahim N, Singh P, Rahman LU (2015) Agrobacterium tumefaciens mediated genetic transformation of Ocimum gratissimum: a medicinally important crop. Ind Crop Prod 71:138–146.  https://doi.org/10.1016/j.indcrop.2015.03.080 CrossRefGoogle Scholar
  70. Kim JY, Adhikari PB, Ahn CH, Kim DH, Kim YC, Han JY, Kondeti S, Choi YE (2017) High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius. J Ginseng Res.  https://doi.org/10.1016/j.jgr.2017.08.002 (Article in press) CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. TRENDS Gen 23:578–587.  https://doi.org/10.1016/j.tig.2007.08.012 CrossRefGoogle Scholar
  72. Krishnan SS, Siril EA (2017) Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. Physiol Mol Biol Plants 23:471–475.  https://doi.org/10.1007/s12298-017-0425-z CrossRefPubMedPubMedCentralGoogle Scholar
  73. Krishnan PN, Decruse SW, Radha RK (2011) Conservation of medicinal plants of Western Ghats, India and its sustainable utilization through in vitro technology. Vitro Cell Dev Biol Plant 47:110–122.  https://doi.org/10.1007/s11627-011-9344-9 CrossRefGoogle Scholar
  74. Kumar M, Mitra A (2017) Hairy root culture of Nicotiana tabacum (Tobacco) as a platform for gene manipulation of secondary metabolism. In: Malik S (ed) Production of plant derived natural compounds through hairy root culture. Springer, ChamGoogle Scholar
  75. Kumar SR, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of geranyl (geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front Plant Sci.  https://doi.org/10.3389/fpls.2018.00942 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kumar V, Moyo M, Van Staden J (2017) Somatic embryogenesis in Hypoxis hemerocallidea: an important African medicinal plant. S Afr J Bot 108:331–336.  https://doi.org/10.1016/j.sajb.2016.08.012 CrossRefGoogle Scholar
  77. Kumari A, Baskaran P, Plačková L, Omámiková H, Nisler J, Doležal K, Van Staden J (2018) Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri. J Plant Physiol 223:65–71.  https://doi.org/10.1016/j.jplph.2018.01.005 CrossRefPubMedGoogle Scholar
  78. Kundu S, Salma U, Ali MN, Hazra AK, Mandal N (2018) Development of transgenic hairy roots and augmentation of secondary metabolites by precursor feeding in Sphagneticola calendulacea (L.) Pruski. Ind Crop Prod.  https://doi.org/10.1016/j.indcrop.2018.05.009 CrossRefGoogle Scholar
  79. Lalaleo L, Testillano P, Risueño MC, Cusidó RM, Palazon J, Alcazar R, Bonfill M (2018) Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linum album. J Plant Physiol 228:47–58.  https://doi.org/10.1016/j.jplph.2018.05.007 CrossRefPubMedGoogle Scholar
  80. Lan X, Zeng J, Liu K, Zhang F, Bai G, Chen M, Liao Z, Huang L (2018) Comparison of two hyoscyamine 6β-hydroxylases in engineering scopolamine biosynthesis in root cultures of Scopolia lurida. Biochem Biophys Res Commun 497:25–31.  https://doi.org/10.1016/j.bbrc.2018.01.173 CrossRefPubMedGoogle Scholar
  81. Lata H, Chandra S, Khan IA, ElSohly MA (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L.—an important medicinal plant. Physiol Mol Biol Plant 15:79–86.  https://doi.org/10.1007/s12298-009-0008-8 CrossRefGoogle Scholar
  82. Lata H, Chandra S, Techen N, Khan IA, ElSohly MA (2016) In vitro mass propagation of Cannabis sativa L.: a protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J Appl Res Med Aromat Plants 3:18–26.  https://doi.org/10.1016/j.jarmap.2015.12.001 CrossRefGoogle Scholar
  83. Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621.  https://doi.org/10.1016/j.tplants.2009.09.005 CrossRefPubMedGoogle Scholar
  84. Li Y, Gao Z, Piao C, Lu K, Wang Z, Cui ML (2014) A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L. Appl Biochem Biotechnol 172:1807–1817.  https://doi.org/10.1007/s12010-013-0648-6 CrossRefPubMedGoogle Scholar
  85. Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep.  https://doi.org/10.1038/srep43320 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Liu W, Yuan JS, Stewart Jr CN (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet.  https://doi.org/10.1038/nrg3583 CrossRefPubMedGoogle Scholar
  87. Liu X, Liu Y, Huang P, Ma Y, Qing Z, Tang Q, Cao H, Cheng P, Zheng Y, Yuan Z, Zhou Y (2017a) The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol Plant 10:975–989.  https://doi.org/10.1016/j.molp.2017.05.007 CrossRefPubMedGoogle Scholar
  88. Liu Y, Sun G, Zhong Z, Ji L, Zhang Y, Zhou J, Zheng X, Deng K (2017b) Overexpression of AtEDT1 promotes root elongation and affects medicinal secondary metabolite biosynthesis in roots of transgenic Salvia miltiorrhiza. Protoplasma 254:1617–1625.  https://doi.org/10.1007/s00709-016-1045-0 CrossRefPubMedGoogle Scholar
  89. Liu ZB, Chen JG, Yin ZP, Shangguan XC, Peng DY, Lu T, Lin P (2018) Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1401-1 CrossRefGoogle Scholar
  90. Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974.  https://doi.org/10.1016/j.molp.2016.04.009 CrossRefPubMedGoogle Scholar
  91. Mahendran G, Narmatha Bai V (2015) Plant regeneration through direct somatic embryogenesis, antioxidant properties and metabolite profiles of Swertia corymbosa (Griseb.) Wight ex C.B. Clarke. Plant Biosyst.  https://doi.org/10.1080/11263504.2015.1064043 CrossRefGoogle Scholar
  92. Mahendran D, Kishor PK, Geetha N, Venkatachalam P (2018) Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L. J Appl Phycol 30:1425–1436.  https://doi.org/10.1007/s10811-017-1293-1 CrossRefGoogle Scholar
  93. Manjkhola S, Dhar U, Joshi M (2005) Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma—a critically endangered medicinal plant of the Himalaya. Vitro Cell Dev Biol Plant 41:244–248.  https://doi.org/10.1079/IVP2004612 CrossRefGoogle Scholar
  94. Mansouri H, Bagheri M (2017) Induction of polyploidy and its effect on Cannabis sativa L. In: Chandra S, Lata H, ElSohly M (eds) Cannabis sativa L.-botany and biotechnology. Springer, ChamGoogle Scholar
  95. Máthé Á, Hassan F, Kader AA (2015) In vitro micropropagation of medicinal and aromatic plants. In: Máthé Á (ed) Medicinal and aromatic plants of the world. Medicinal and aromatic plants of the world, vol 1. Springer, Dordrecht, pp 305–336.  https://doi.org/10.1007/978-94-017-9810-5_15 CrossRefGoogle Scholar
  96. Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560.  https://doi.org/10.1016/j.biotechadv.2008.07.001 CrossRefPubMedGoogle Scholar
  97. Matveeva TV, Sokornova SV (2018) Agrobacterium rhizogenes-mediated transformation of plants for improvement of yields of secondary metabolites. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer, Cham.  https://doi.org/10.1007/82_2018_80 CrossRefGoogle Scholar
  98. Mishra S, Bansal S, Sangwan RS, Sangwan NS (2016) Genotype independent and efficient Agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera Dunal. J Plant Biochem Biotech 25:191–198.  https://doi.org/10.1007/s13562-015-0324-8 CrossRefGoogle Scholar
  99. Mohagheghzadeh A, Gholami A, Hemmati S, Dehshahri S (2008) Bag culture: a method for root-root co-culture. ZNaturforsch C 63:157–160.  https://doi.org/10.1515/znc-2008-1-229 CrossRefGoogle Scholar
  100. Monfort LEF, Bertolucci SKV, Lima AF, de Carvalho AA, Mohammed A, Blank AF, Pinto JEBP (2018) Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in shoot cultures of Ocimum basilicum. Ind Crop Prod 116:231–239.  https://doi.org/10.1016/j.indcrop.2018.02.075 CrossRefGoogle Scholar
  101. Mustafavi SH, Badi HN, Sękara A, Mehrafarin A, Janda T, Ghorbanpour M, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40:102.  https://doi.org/10.1007/s11738-018-2671-2 CrossRefGoogle Scholar
  102. Nalawade SM, Tsay HS (2004) In vitro propagation of some important Chinese medicinal plants and their sustainable usage. Vitro Cell Dev Biol Plant 40:143–154.  https://doi.org/10.1079/IVP2003504 CrossRefGoogle Scholar
  103. Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56.  https://doi.org/10.1016/j.tplants.2009.09.010 CrossRefPubMedGoogle Scholar
  104. Naz R, Anis M, Alatar AA, Ahmad A, Naaz A (2018) Nutrient alginate encapsulation of nodal segments of Althaea officinalis L., for short-term conservation and germplasm exchange. Plant Biosyst.  https://doi.org/10.1080/11263504.2018.1436610 CrossRefGoogle Scholar
  105. Niazian M, Noori SAS, Galuszka P, Tohidfar M, Mortazavian SMM (2017a) Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Carum copticum L. Ind Crop Prod 97:330–337.  https://doi.org/10.1016/j.indcrop.2016.12.044 CrossRefGoogle Scholar
  106. Niazian M, Noori SAS, Galuszka P, Mortazavian SMM (2017b) Tissue culture-based Agrobacterium-mediated and in planta transformation methods. Czech J Genet Plant Breed 53:133–143.  https://doi.org/10.17221/177/2016-CJGPB CrossRefGoogle Scholar
  107. Niazian M, Sadat Noori SA, Tohidfar M, Mortazavian SMM (2017c) Essential oil yield and agro-morphological traits in some Iranian ecotypes of ajowan (Carum copticum L.). J Essent Oil Bear Plants 20:1151–1156.  https://doi.org/10.1080/0972060X.2017.1326849 CrossRefGoogle Scholar
  108. Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM (2018a) Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). Vitro Cell Dev Biol Plant 54:54–68.  https://doi.org/10.1007/s11627-017-9877-7 CrossRefGoogle Scholar
  109. Niazian M, Sadat-Noori SA, Abdipour M (2018b) Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind Crop Prod 117:224–234.  https://doi.org/10.1016/j.indcrop.2018.03.013 CrossRefGoogle Scholar
  110. Niazian M, Sadat-Noori SA, Abdipour M (2018c) Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). J Appl Res Med Aromat Plants 9:124–131.  https://doi.org/10.1016/j.jarmap.2018.04.001 CrossRefGoogle Scholar
  111. Nogueira M, Enfissi EM, Almeida J, Fraser PD (2018) Creating plant molecular factories for industrial and nutritional isoprenoid production. Curr Opin Biotechnol 49:80–87.  https://doi.org/10.1016/j.copbio.2017.08.002 CrossRefPubMedGoogle Scholar
  112. Noman A, Aqeel M, He S (2016) CRISPR-Cas9: tool for qualitative and quantitative plant genome editing. Front Plant Sci 7:1740.  https://doi.org/10.3389/fpls.2016.01740 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Noori SAS, Norouzi M, Karimzadeh G, Shirkool K, Niazian M (2017) Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult 130:543–551.  https://doi.org/10.1007/s11240-017-1245-0 CrossRefGoogle Scholar
  114. Nyende AB, Schittenhelm S, Mix-Wagner G, Greef JM (2003) Production, storability, and regeneration of shoot tips of potato (Solanum tuberosum L.) encapsulated in calcium alginate hollow beads. Vitro Cell Dev Biol Plant 39:540–544.  https://doi.org/10.1079/IVP2003442 CrossRefGoogle Scholar
  115. Oliveira JPS, Hakimi O, Murgu M, Koblitz MGB, Ferreira MSL, Cameron LC, Macedo AF (2018) Tissue culture and metabolome investigation of a wild endangered medicinal plant using high definition mass spectrometry. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1408-7 CrossRefGoogle Scholar
  116. Pandey S, Mishra A, Patel MK, Jha B (2013) An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.). Appl Biochem Biotechnol 171:1–9.  https://doi.org/10.1007/s12010-013-0349-1 CrossRefPubMedGoogle Scholar
  117. Pandey V, Srivastava R, Akhtar N, Mishra J, Mishra P, Verma PC (2016) Expression of Withania somnifera steroidal glucosyltransferase gene enhances withanolide content in hairy roots. Plant Mol Biol Rep 34:681–689.  https://doi.org/10.1007/s11105-015-0955-x CrossRefGoogle Scholar
  118. Pan-pan H, Wei-xu L, Hui-hui L (2018) In vitro induction and identification of autotetraploid of Bletilla striata (Thunb.) Reichb. f. by colchicine treatment. Plant Cell Tissue Organ Cult 132:425–432.  https://doi.org/10.1007/s11240-017-1339-8 CrossRefGoogle Scholar
  119. Patra N, Srivastava AK (2017) Mass Production of Artemisinin Using Hairy Root Cultivation of Artemisia annua in Bioreactor. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer, Cham.  https://doi.org/10.1007/978-3-319-32004-5_20-1 CrossRefGoogle Scholar
  120. Pérez-Alonso N, Martín R, Capote A, Pérez A, Hernández-Díaz EK, Rojas L, Jiménez E, Quiala E, Angenon G, Garcia-Gonzales R, Chong-Pérez B (2018) Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crop Prod 116:259–266.  https://doi.org/10.1016/j.indcrop.2018.02.067 CrossRefGoogle Scholar
  121. Piosik L, Zenkteler E, Zenkteler M (2016) Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica 208:439–451.  https://doi.org/10.1007/s10681-015-1578-x CrossRefGoogle Scholar
  122. Pouvreau B, Vanhercke T, Singh S (2018) From plant metabolic engineering to plant synthetic biology: the evolution of the design/build/test/learn cycle. Plant Sci.  https://doi.org/10.1016/j.plantsci.2018.03.035 CrossRefPubMedGoogle Scholar
  123. Pradhan S, Tiruwa B, Subedee BR, Pant B (2014) In vitro germination and propagation of a threatened medicinal orchid, Cymbidium aloifolium (L.) Sw. through artificial seed. Asian Pac J Trop Biomed 4:971–976.  https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0369 CrossRefGoogle Scholar
  124. Pradhan SK, Gupta RC, Goel RK (2018) Differential content of secondary metabolites in diploid and tetraploid cytotypes of Siegesbeckia orientalis L. Prod Res, Nat.  https://doi.org/10.1080/14786419.2017.1423298 CrossRefGoogle Scholar
  125. Prasad A, Singh M, Yadav NP, Mathur AK, Mathur A (2014) Molecular, chemical and biological stability of plants derived from artificial seeds of Centella asiatica (L.) Urban—an industrially important medicinal herb. Ind Crop Prod 60:205–211.  https://doi.org/10.1016/j.indcrop.2014.06.022 CrossRefGoogle Scholar
  126. Rajesh M, Jeyaraj M, Sivanandhan G, Subramanyam K, Mariashibu TS, Mayavan S, Dev K, Anbazhagan VR, Manickavasagam M, Ganapathi A (2013) Agrobacterium-mediated transformation of the medicinal plant Podophyllum hexandrum Royle (syn. P.emodi Wall. ex Hook.f. and Thomas). Plant Cell Tiss Organ Cult 114:71–82.  https://doi.org/10.1007/s11240-013-0307-1 CrossRefGoogle Scholar
  127. Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145.  https://doi.org/10.5897/AJB2004.000-2025 CrossRefGoogle Scholar
  128. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618.  https://doi.org/10.1038/nature08842 CrossRefPubMedGoogle Scholar
  129. Rawat JM, Bhandari A, Mishra S, Rawat B, Dhakad AK, Thakur A, Chandra A (2018) Genetic stability and phytochemical profiling of the in vitro regenerated plants of Angelica glauca Edgew.: an endangered medicinal plant of Himalaya. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1448-z CrossRefGoogle Scholar
  130. Rosa WS, Martins JPR, Rodrigues ES, de Almeida Rodrigues LC, Gontijo ABPL, Falqueto AR (2018) Photosynthetic apparatus performance in function of the cytokinins used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae). Plant Cell Tissue Organ Cult 133:339–350.  https://doi.org/10.1007/s11240-018-1385-x CrossRefGoogle Scholar
  131. Roychowdhury D, Halder M, Jha S (2016) Agrobacterium rhizogenes-mediated transformation in medicinal plants: genetic stability in long-term culture. In: Jha S (ed) Transgenesis and secondary metabolism. Reference series in phytochemistry. Springer, Cham.  https://doi.org/10.1007/978-3-319-27490-4_8-1 CrossRefGoogle Scholar
  132. Ruiz-Ramírez LA, Godoy-Hernández GC, Álvarez-Gutiérrez PE, Ruíz-Valdiviezo VM, Lujan-Hidalgo MC, Avilés-Berzunza E, Gutiérrez-Miceli FA (2018) Protocol for bonediol production in Bonellia macrocarpa hairy root culture. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1403-z CrossRefGoogle Scholar
  133. Saeed T, Shahzad A, Ahmad N, Parveen S (2018) High frequency conversion of non-embryogenic synseeds and assessment of genetic stability through ISSR markers in Gymnema sylvestre. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1409-6 CrossRefGoogle Scholar
  134. Saha S, Sengupta C, Ghosh P (2015) Encapsulation, short-term storage, conservation and molecular analysis to assess genetic stability in alginate-encapsulated microshoots of Ocimum kilimandscharicum Guerke. Plant Cell Tissue Organ Cult 120:519–530.  https://doi.org/10.1007/s11240-014-0618-x CrossRefGoogle Scholar
  135. Salma U, Kundu S, Mandal N (2017) Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J Crop Sc Biotechnol 20:9–19.  https://doi.org/10.1007/s12892-016-0080-1 CrossRefGoogle Scholar
  136. Salma U, Kundu S, Hazra AK, Ali MN, Mandal N (2018) Augmentation of wedelolactone through in vitro tetraploid induction in Eclipta alba (L.) Hassk. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1381-1 CrossRefGoogle Scholar
  137. Seth S, Rath SC, Rout GR, Panigrahi J (2016) Somatic embryogenesis in Abutilon indicum (L.) Sweet and assessment of genetic homogeneity using SCoT markers. Plant Biosyst.  https://doi.org/10.1080/11263504.2016.1211193 CrossRefGoogle Scholar
  138. Sharma A, Verma N, Verma P, Verma RK, Mathur A, Mathur AK (2017) Optimization of a Bacopa monnieri-based genetic transformation model for testing the expression efficiency of pathway gene constructs of medicinal crops. Vitro Cell Dev Biol Plant 53:22–32.  https://doi.org/10.1007/s11627-017-9804-y CrossRefGoogle Scholar
  139. Sharma A, Verma P, Mathur A, Mathur AK (2018a) Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 255:425–435.  https://doi.org/10.1007/s00709-017-1151-7 CrossRefPubMedGoogle Scholar
  140. Sharma S, Satardekar KV, Barve SS (2018b) Genetic improvement of medicinal and aromatic plants through haploid and double haploid development. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore.  https://doi.org/10.1007/978-981-13-0535-1_24 CrossRefGoogle Scholar
  141. Sharma A, Verma P, Mathur A, Mathur AK (2018c) Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma.  https://doi.org/10.1007/s00709-018-1233-1 CrossRefPubMedGoogle Scholar
  142. Shen HJ, Chen JT, Chung HH, Chang WC (2018) Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore ‘Elsa’. Bot Stud.  https://doi.org/10.1186/s40529-018-0220-3 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Siahsar B, Rahimi M, Tavassoli A, Raissi A (2011) Application of biotechnology in production of medicinal plants. Am Eur J Agric Environ Sci 11:439–444Google Scholar
  144. Singh P, Khan S, Kumar S, ur Rahman L (2017) Establishment of an efficient Agrobacterium-mediated genetic transformation system in Pelargonium graveolens: an important aromatic plant. Plant Cell Tissue Organ Cult 129:35–44.  https://doi.org/10.1007/s11240-016-1153-8 CrossRefGoogle Scholar
  145. Sitarek P, Kowalczyk T, Picot L, Michalska-Hejduk D, Bijak M, Białas AJ, Wielanek M, Śliwiński T, Skała E (2018a) Growth of Leonurus sibiricus L. roots with over-expression of AtPAP1 transcriptional factor in closed bioreactor, production of bioactive phenolic compounds and evaluation of their biological activity. Ind Crop Prod 122:732–739.  https://doi.org/10.1016/j.indcrop.2018.06.059 CrossRefGoogle Scholar
  146. Sitarek P, Kowalczyk T, Rijo P, Białas AJ, Wielanek M, Wysokińska H, Garcia C, Toma M, Śliwiński T, Skała E (2018b) Over-Expression of AtPAP1 transcriptional factor enhances phenolic acid production in transgenic roots of Leonurus sibiricus L. and their biological activities. Mol Biol 60:74–82.  https://doi.org/10.1007/s12033-017-0048-1 CrossRefGoogle Scholar
  147. Sivanandhan G, Arunachalam C, Vasudevan V, Kapildev G, Sulaiman AA, Selvaraj N, Ganapathi A, Lim YP (2016) Factors affecting Agrobacterium-mediated transformation in Hybanthus enneaspermus (L.) F. Muell. Plant Biotech Rep 10:49–60.  https://doi.org/10.1007/s11816-016-0385-8 CrossRefGoogle Scholar
  148. Sohrabi SM, Ismaili A, Nazarian-Firouzabadi F (2018) Simultaneous over-expression and silencing of some benzylisoquinoline alkaloid biosynthetic genes in opium poppy. Ind Crop Prod 123:581–590.  https://doi.org/10.1016/j.indcrop.2018.06.080 CrossRefGoogle Scholar
  149. Soltani Howyzeh M, Sadat Noori SA, Shariati JV, Niazian M (2018) Essential oil chemotype of iranian ajowan (Trachyspermum ammi L.). J Essent Oil Bear Plants 21:273–276.  https://doi.org/10.1080/0972060X.2018.1433074 CrossRefGoogle Scholar
  150. Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following 6 months of storage. Plant Cell Tissue Organ Cult 99:193–198.  https://doi.org/10.1007/s11240-009-9593-z CrossRefGoogle Scholar
  151. Talebi SF, Saharkhiz MJ, Kermani MJ, Sharafi Y, Raouf Fard F (2017) Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia 70:184–193.  https://doi.org/10.1080/00087114.2017.1318502 CrossRefGoogle Scholar
  152. Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 25:103–110.  https://doi.org/10.1016/j.copbio.2013.09.010 CrossRefPubMedGoogle Scholar
  153. Tonk D, Mujib A, Maqsood M, Ali M, Zafar N (2016) Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell Tissue Organ Cult 126:291–303.  https://doi.org/10.1007/s11240-016-0998-1 CrossRefGoogle Scholar
  154. Urbanová M, Košuth J, Čellárová E (2006) Genetic and biochemical analysis of Hypericum perforatum L. plants regenerated after cryopreservation. Plant Cell Rep 25:140–147.  https://doi.org/10.1007/s00299-005-0050-0 CrossRefPubMedGoogle Scholar
  155. Utami ESW, Hariyanto S, Manuhara YSW (2018) Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera JJ Sm: an important medicinal orchid. Genet Eng Biotechnol.  https://doi.org/10.1016/j.jgeb.2018.02.002 (Article in press) CrossRefGoogle Scholar
  156. Vaidya BN, Jackson CL, Perry ZD, Dhekney SA, Joshee N (2016) Agrobacterium-mediated transformation of thin cell layer explants of Scutellaria ocmulgee small: a rare plant with anti-tumor properties. Plant Cell Tissue Organ Cult 127:57–69.  https://doi.org/10.1007/s11240-016-1029-y CrossRefGoogle Scholar
  157. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530.  https://doi.org/10.1016/j.tibtech.2009.05.006 CrossRefPubMedGoogle Scholar
  158. Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381.  https://doi.org/10.1007/s00709-014-0685-1 CrossRefPubMedGoogle Scholar
  159. Vieira LM, Silva PO, Fernandes AM, Rocha DI, Otoni WC (2018) Protocol for somatic embryogenesis in Passiflora cincinnata Mast. (Passifloraceae). In: Jain S, Gupta P (eds) Step wise protocols for somatic embryogenesis of important woody plants. Forestry sciences, vol 85. Springer, Cham.  https://doi.org/10.1007/978-3-319-79087-9_21 CrossRefGoogle Scholar
  160. Vijendra PD, Jayanna SG, Kumar V, Gajula H, Rajashekar J, Sannabommaji T, Basappa G, Anuradha CM (2017) Rapid in vitro propagation of Lucas aspera Spreng: a potential multipurpose Indian medicinal herb. Ind Crop Prod 107:281–287.  https://doi.org/10.1016/j.indcrop.2017.05.042 CrossRefGoogle Scholar
  161. Wang LJ, Sheng MY, Wen PC, Du JY (2017) Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Fagopyrum tataricum (L.) Gaertn. Bot Stud 58:2.  https://doi.org/10.1186/s40529-016-0157-3 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351.  https://doi.org/10.1007/s00253-009-2354-4 CrossRefPubMedGoogle Scholar
  163. Weremczuk-Jezyna I, Grzegorczyk-Karolak I, Frydrych B, Hnatuszko-Konka K, Gerszberg A, Wysokinska H (2017) Rosmarinic acid accumulation and antioxidant potential of Dracocephalum moldavica L cell suspension culture. Not Bot Horti Agrobot 45:215–219.  https://doi.org/10.15835/nbha45110728 CrossRefGoogle Scholar
  164. Werner S, Maschke RW, Eibl D, Eibl R (2018) Bioreactor technology for sustainable production of plant cell-derived products. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems: Reference series in phytochemistry. Springer, Cham.  https://doi.org/10.1007/978-3-319-32004-5_6-1 CrossRefGoogle Scholar
  165. Widoretno W (2016) In vitro induction and characterization of tetraploid Patchouli (Pogostemon cablin Benth.) plant. Plant Cell Tissue Organ Cult 125:261–267.  https://doi.org/10.1007/s11240-016-0946-0 CrossRefGoogle Scholar
  166. Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182.  https://doi.org/10.1016/j.copbio.2014.01.006 CrossRefPubMedGoogle Scholar
  167. Wójcik AI, Rybczyński JJ (2017) Genetic transformation of gentian Gentiana tibetica (King) leaf explants with Agrobacterium tumefaciens strain C58C1. Acta Physiol Plant 39:29.  https://doi.org/10.1007/s11738-016-2327-z CrossRefGoogle Scholar
  168. Wu CH, Murthy HN, Hahn EJ, Paek KY (2008) Establishment of adventitious root co-culture of Ginseng and Echinacea for the production of secondary metabolties. Acta Physiol Plant 30:891–896.  https://doi.org/10.1007/s11738-008-0181-3 CrossRefGoogle Scholar
  169. Xia J, Ma YJ, Wang Y, Wang JW (2018) Deciphering transcriptome profiles of tetraploid Artemisia annua plants with high artemisinin content. Plant Physiol Biochem 1:1.  https://doi.org/10.1016/j.plaphy.2018.06.018 CrossRefGoogle Scholar
  170. Xing B, Yang D, Liu L, Han R, Sun Y, Liang Z (2018a) Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots. Plant Cell Tissue Organ Cult 1:1.  https://doi.org/10.1007/s11240-018-1405-x CrossRefGoogle Scholar
  171. Xing B, Yang D, Yu H, Zhang B, Yan K, Zhang X, Han R, Liang Z (2018b) Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Plant Sci 276:229–238.  https://doi.org/10.1016/j.plantsci.2018.07.016 CrossRefPubMedGoogle Scholar
  172. Xu T, Li Y, Van Nostrand JD, He Z, Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544–1552.  https://doi.org/10.1128/AEM.03786-13 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Xue SH, Luo XJ, Wu ZH, Zhang HL, Wang XY (2008) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill., Astragalus membranaceus and Gentiana macrophylla Pall. Plant Cell Tissue Organ Cult 92:251–260.  https://doi.org/10.1007/s11240-007-9329-x CrossRefGoogle Scholar
  174. Yamazaki M, Rai A, Yoshimoto N, Saito K (2018) Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnol Rep 12:69–75.  https://doi.org/10.1007/s11816-018-0476-9 CrossRefGoogle Scholar
  175. Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z (2017) Overexpression of smMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 8:1804.  https://doi.org/10.3389/fpls.2017.01804 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Yin M, Hong S (2009) Cryopreservation of Dendrobium candidum Wall. ex Lindl. protocorm-like bodies by encapsulation-vitrification. Plant Cell Tissue Organ Cult 98:179–185.  https://doi.org/10.1007/s11240-009-9550-x CrossRefGoogle Scholar
  177. Zargar SM, Raatz B, Sonah H, Bhat JA, Dar ZA, Agrawal GK, Rakwal R (2015) Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. J Crop Sci Biotech 18:293–308.  https://doi.org/10.1007/s12892-015-0037-5 CrossRefGoogle Scholar
  178. Zhang R, Zhang BL, Li GC, Xie T, Hu T, Luo ZY (2015) Enhancement of ginsenoside Rg1 in Panax ginseng hairy root by overexpressing the α-l-rhamnosidase gene from Bifidobacterium breve. Biotechnol Lett 37:2091–2096.  https://doi.org/10.1007/s10529-015-1889-y CrossRefPubMedGoogle Scholar
  179. Zhao B, Agblevor FA, Ritesh KC, Jelesko JG (2013) Enhanced production of the alkaloid nicotine in hairy root cultures in Nicotiana tabacum L. Plant Cell Tissue Organ Cult 113:121–129.  https://doi.org/10.1007/s11240-012-0256-0 CrossRefGoogle Scholar
  180. Zhao X, Park SY, Yang D, Lee SY (2018) Synthetic biology for natural compounds. Biochemistry.  https://doi.org/10.1021/acs.biochem.8b00569 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, Chen W, Zhang L (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochem 148:63–70.  https://doi.org/10.1016/j.phytochem.2018.01.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Tissue and Cell CultureAgricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO)KarajIran

Personalised recommendations