Advertisement

Planta

, Volume 249, Issue 1, pp 31–47 | Cite as

A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus

  • Uri PickEmail author
  • Aliza Zarka
  • Sammy Boussiba
  • Lital Davidi
Review
Part of the following topical collections:
  1. Terpenes and Isoprenoids

Abstract

Main conclusion

Hypercarotenogenesis in green algae evolved by mutation of PSY that increased its transcription at high light, disintegration of the eyespot in Dunaliella and acquisition of the capacity to export carotenoids from chloroplasts in Haematococcus.

Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10% (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4% (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.

Keywords

Carotenogenic response Carotenoid lipid droplets Dunaliella salina/bardawil Haematococcus pluvialis Eyespot Phytoene synthase 

Abbreviations

Ast

Astaxanthin

Ast-TA

Ast transacylase

βC

β-carotene

βC-PG

βC plastoglobules

BKT

βC ketolase

Car

Carotenoid/s

Chl

Chlorophyll

CLD

Cytoplasmic lipid droplets

CRTR-B

ΒC hydroxylase

FA

Fatty acids

HCR

Hypercarotenogenic response

HL

High light

ND

Nutrient deprivation

PS-II

Photosystem II

PSY

Phytoene synthase

ROS

Reactive oxygen species

TAG

Triacylglycerol

Notes

Acknowledgements

We wish to thank Dr. Aviv Shaish, The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer in Israel for critical comments and helpful discussions.

Supplementary material

425_2018_3050_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
425_2018_3050_MOESM2_ESM.pptx (116 kb)
Supplementary material 2 (PPTX 115 kb)

References

  1. Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–3005Google Scholar
  2. Ambati RR, Gogisetty D, Gokare RA, Ravi S, Bikkina PN, Su Y, Lei B (2018) Botryococcus as an alternative source of carotenoids and its possible applications—an overview. Crit Rev Biotechnol 38:541–558Google Scholar
  3. Arad S, Cohen E, Ben-Amotz A (1993) Accumulation of canthaxanthin in Chlorella emersonii. Physiol Plant 87:232–236Google Scholar
  4. Avidan O, Brandis A, Rogachev I, Pick U (2015) Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata. J Exp Bot 66:3725–3735Google Scholar
  5. Ben Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597Google Scholar
  6. Ben Amotz A, Avron M (1989) The wavelength dependence of massive carotene synthesis in Dunaliella bardawil (Chlorophyceae). J Phycol 25:175–178Google Scholar
  7. Ben Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chloropyceae). J Phycol 18:529–537Google Scholar
  8. Ben-Amotz Lers A, Avron M (1988) Stereoisomers of β-carotene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291Google Scholar
  9. Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of massively accumulated beta-carotene in Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043Google Scholar
  10. Bohne F, Linden H (2002) Regulation of carotenoid biosynthesis in response to light in Chlamydomonas reinhardtii. Biochim Biophys Acta 1579:26–34Google Scholar
  11. Bone RA, Landrum JT (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentration of these carotenoids in humans. J Nutr 133:992–998Google Scholar
  12. Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25(3):743–756Google Scholar
  13. Borowitzka MA, Huisman JM (1993) The ecology of Dunaliella salina (Chlorophyceae, Volvocales): effect of environmental conditions on aplanospore formation. Bot Marina 36:233–244Google Scholar
  14. Botella JA, Murillo FJ, Ruiz-Vázquez R (1995) A cluster of structural and regulatory genes for light-induced carotenogenesis in Mixococcus xanthus. Eur J Biochem 233:238–248Google Scholar
  15. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117Google Scholar
  16. Boyd JS, Mittelmeier TM, Dieckmaa CL (2011) New insights into eyespot placement and assembly in Chlamydomonas. Bio Archit 1:196–199Google Scholar
  17. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:1360–1385Google Scholar
  18. Caffarri S, Tibiletti T, Jennings RC, Santabarbara S (2014) A comparison between photosystem I and photosystem II architecture and functioning. Curr Prot Peptide Sci 15:296331Google Scholar
  19. Capelli B, Bagchi D, Cysewski GR (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 12:145–152Google Scholar
  20. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274Google Scholar
  21. Chekanov K, Lukyanov A, Boussiba S, Aflalo C, Solovchenko A (2016) Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynth Res 128:313–323Google Scholar
  22. Chen CY, Kao AL, Tsai ZC, Shen YM, Kao PH, Nge IS, Chang JS (2017) Expression of synthetic phytoene synthase gene to enhance β-carotene production in Scenedesmus sp. CPC2. Biotechnol J.  https://doi.org/10.1002/biot.201700204 Google Scholar
  23. Couso I, Vila M, Rodriguez H, Vargas MA, León R (2011) Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Prog 27:54–60Google Scholar
  24. Craft NE, Soares JH Jr (1992) Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. J Agric Food Chem 40:431–434Google Scholar
  25. Davidi L, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33Google Scholar
  26. Davidi L, Pick U (2017) Novel 9-cis/all-trans β-carotene isomerase from plastidic lipid droplets in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene. Plant Cell Rep 36:807–814Google Scholar
  27. Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. J Physiol 164:2139–2156Google Scholar
  28. Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic ß-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79Google Scholar
  29. Del Campo JA, Rodrìguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zogfingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854Google Scholar
  30. Demming-Adams B, Adams WA III (1996) The role of xanthophyll-cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26Google Scholar
  31. Duanmu D, Bachy C, Sudek S, Wong CH, Jimènez V, Rockwell NC, Martin SS, Ngan CY, Reistetter EN, van Baren MJ, Price DC, Wei CL, Reyes-Prieto A, Lagarias JC, Worden AZ (2014) Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci USA 44:15827–15832Google Scholar
  32. Duffy CDP, Ruban AV (2015) Dissipative pathways in the photosystem-II antenna in plants. J Photochem Photobiol 152:215–226Google Scholar
  33. Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406Google Scholar
  34. During A, Harrison E (2007) Mechanism of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. J Lipid Res 48:2283–2294Google Scholar
  35. El-Sayed AB (2010) Carotenoids accumulation in the green alga Scenedesmus sp. incubated with industrial citrate waste and different incubation stresses. Nat Sci 8:34–40Google Scholar
  36. Fan L, Vonshak A, Gabbay R, Hirshberg J, Cohen Z, Boussiba S (1995) The biosynthesis pathway of astaxanthin in a green algae Haematococcus pluvialis as indicated by inhibition with diphenylamine. Plant Cell Physiol 36:1519–1524Google Scholar
  37. Fu X, Feng C, Wang C, Yin X, Lu P, Grierson D, Cu C, Chen K (2014) Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids. J Exp Bot 65:4679–4689Google Scholar
  38. Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants 6:96.  https://doi.org/10.3390/antiox6040096 Google Scholar
  39. García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis -carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90Google Scholar
  40. Garone M, Howard J, Fabricant J (2015) A review of common tanning methods. J Clin Aesthet Dermatol 8:43–47Google Scholar
  41. Georgianna DR, Hannon MJ, Marchuschi M, Wu S, Botsch K, Lewis AJ, Hyun J, Ghetti F, Herrmann H, Häder D, Seidlitz H (1999) Spectral dependence of the inhibition of photosynthesis under stimulated global radiation in the unicellular green alga Dunaliella salina. J Photochem Photobiol B 48:166–173Google Scholar
  42. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412Google Scholar
  43. Grünewald K, Hagen C (2001) β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoids in Haematococcus pluvialis. J Appl Phycol 13:89–93Google Scholar
  44. Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029Google Scholar
  45. Grung M, Metzers P, Liaaen-Jensen II (1994) Algal carotenoid 53, secondary carotenoids of alga 4, secondary carotenoids in the green alga Botryococcus braunii, race L, new strain. Biochem Syst Ecol 22:25–29Google Scholar
  46. Gruszecki WI, Strzalka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115Google Scholar
  47. Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J Photochem Photobiol 20:153–160Google Scholar
  48. Han D, Wang J, Sommerfeld M, Hu Q (2012) Susceptibility and protective mechanisms of motile and non-motile cells of Haematococcus pluvialis (Chloropyceae) to photooxidative stress. J Phycol 48:693–705Google Scholar
  49. Han Y, Zheng QS, Wei YP, Chen J, Liu R, Wan HJ (2015) In silico identification and analysis of phytoene synthase genes in plants. Gen Mol Res 14:9412–9422Google Scholar
  50. Hanagata N, Dubinsky Z (1999) Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). J Phycol 35:960–966Google Scholar
  51. Hashimoto H, Uragami C, Cogdell RC (2016) Carotenoids and photosynthesis. In: Carotenoids in nature. Subcellular Biochem, vol 74. Springer, Berlin, pp 111–139Google Scholar
  52. Henríquez V, Escobar C, Galarza J, Gimpel J (2016) Carotenoids in microalgae. In: Carotenoids in nature. Springer, Cham, pp 219–237Google Scholar
  53. Huang J, Zhong Y, Sandmann G, Liu J, Chen F (2012) Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691–699Google Scholar
  54. Husssain G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health nutrition. J Nat Prod 69:443–449Google Scholar
  55. Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A irradiation. J Photochem Photobiol 48:68–74Google Scholar
  56. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193Google Scholar
  57. Jin E, Polle JEW (2009) Carotenoid biosynthesis in Dunaliella (Chlorophyta). In: Ben-Amotz A, Polle JEW, Rao DVS (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, New Hampshire, pp 147–172Google Scholar
  58. Katz A, Jimenez C, Pick U (1995) Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiol 108:1657–1664Google Scholar
  59. Kobayashi M, Okada T (2000) Protective role of astaxanthin against u.v.-B irradiation in the green alga Haematococcus pluvialis. Biotechnol Lett 22:177–181Google Scholar
  60. Kreimer G (2009) The green alga eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43Google Scholar
  61. Lamb MR, Dutcher SK, Worley CK, Dieckmann CL (1999) Eyespot-assembly mutants in Chlamydomonas reinhardtii. Genetics 153:721–729Google Scholar
  62. Lao YM, Xiao L, Ye ZW, Jiang JG, Zhou SS (2011) In silico analysis of phytoene synthase and its promoter reveals hints for regulation mechanisms of carotenogenesis in Dunaliella bardawil. Bioinformatics 27:2201–2208Google Scholar
  63. Lemoine B, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177Google Scholar
  64. Li Y, Zhang X (2015) Transcriptome analysis in Haematococcus pluvialis: astaxanthin induction by salicylic acid (SA) and jasmonic acid (JA). Plos One.  https://doi.org/10.1371/journal.pone.0140609 Google Scholar
  65. Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008) The maize phytoene synthase gene family: overlapping roles of carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147:1334–1346Google Scholar
  66. Li F, Tsfadia O, Wurtzel ET (2009) The phytoene synthase gene family in grasses. Plant Signal Behav 4:208–211Google Scholar
  67. Liang MH, Jiang JG (2017) Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil. Sien Rep 7:37025Google Scholar
  68. Liang CW, Zhao FQ, Meng CX, Tan CP, Qin S (2006) Molecular cloning, characterization and evolutionary analysis of phytoene desaturase (PDS) gene from Haematococcus pluvialis. World J Microbiol Biotechnol 22:59–64Google Scholar
  69. Liu J, Sun Z, Gerken J, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgae producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515Google Scholar
  70. López-Emparán A, Quezada-Martinez D, Zúñiga-Bustos M, Cifuentes V, Iñiguez-Luy F, Federico L (2014) Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family. PloS One.  https://doi.org/10.1371/journal.pone.0114878 Google Scholar
  71. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158:1172–1192Google Scholar
  72. Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K (2009) Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Rep 2:897–902Google Scholar
  73. Manayi A, Abdollahi M, Raman T, Nabavi SF, Habtemariam S, Dagia M, Nabavi SM (2016) Lutein and cataract: from bench to bedside. Crit Rev Biotechnol 8551:1–11Google Scholar
  74. Mascia F, Girolomoni L, Alcocer MJP, Bargigia I, Perozeni F, Cazzaniga S, Cerullo G, D’Andrea C, Ballottari M (2017) Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in photosystems. Sci Rep 7:16319.  https://doi.org/10.1038/s41598-017-16641-6 Google Scholar
  75. Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, and arachidonic acid content of the unicellular green alga Parietochloris incisa. J Phycol 43:833–843Google Scholar
  76. Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken JP, Martens DE, Gruppen H, Wijffels RH (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27:125–140Google Scholar
  77. Muradian KH, Vaiserman A, Min KJ, Fraifeld VE (2015) Fucoxanthin and lipid metabolism: a minireview. Nut Metab Cardiovasc Dis 25:891–897Google Scholar
  78. Nguyen HM, Baudet M, Cuiné S, Adriano J-M, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273Google Scholar
  79. Nisar N, Shan LL, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82Google Scholar
  80. Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-deprivation and high light conditions. Biotechnol Lett 23:1079–1085Google Scholar
  81. Orset SC, Young AJ (2000) Exposure to low irradiances favors the synthesis of 9-cis, -carotene in Dunaliella salina (Teod.). Plant Physiol 122:609–617Google Scholar
  82. Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of golden rice through increased provitamin A content. Nat Biotechnol 23:482–487Google Scholar
  83. Peled E, Pick U, Zarka A, Shimoni E, Leu S, Boussiba S (2012) Light-induced oil globule migration in Haematococcus pluvialis (Chloropyceae). J Phycol 48:1209–1219Google Scholar
  84. Pick U, Avidan O (2017) Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. J Exp Bot 68:4939–4950Google Scholar
  85. Plutzky L (2011) The PPAR-RXR transcriptional complex in the vasculature. Energy in the balance. Circ Res 108:1002–1016Google Scholar
  86. Polle JEW, Tran D, Ben-Amotz A (2009) History, distribution and habitat of algae of the genus Dunaliella Teodoresco (Chlorophyceae). In: Ben-Amotz A, Polle JEW, Rao DVS (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 1–14Google Scholar
  87. Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248Google Scholar
  88. Reboul E (2013) Absorption of vitamin A and carotenoids by enterocyte: focus on transport proteins. Nutrients 5:3563–3581Google Scholar
  89. Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalga Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503Google Scholar
  90. Recht L, Topfer N, Batushansky A, Sikron N, Zarka A, Gibon I, Nikoloski Z, Fait A, Boussiba S (2014) Metabolite profiling and integrative modeling reveal metabolic constrains for carbon partitioning under nitrogen-starvation in the green alga Haematococcus pluvialis. J Biol Chem 289:30387–30403Google Scholar
  91. Reinecke DL, Castillo-Flores A, Boussiba S, Zarka A (2018) Polyploid polynuclear consecutive cell-cycle enables large genome-size in Haematococcus pluvialis. Algal Res 33:456–461Google Scholar
  92. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268Google Scholar
  93. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574Google Scholar
  94. Roth MS, Cockus SJ, Gallaher SD, Walter A, Lopez D, Erickson E, Emdelman B, Westcott D, Larabell CA, Merchant SS, Pellegrini M, Niyogi KK (2017) Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1619928114
  95. Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta 1847:889–899Google Scholar
  96. Sanchez-Saavedra MP, Jimenez C, Figueroa FL (1996) Far-red light inhibits growth but promotes carotenoid accumulation in the green microalga Dunaliella bardawil. Physiol Plant 98:419–423Google Scholar
  97. Sandmann G (2002) Molecular evolution of carotenoid biosynthesis: from bacteria to plants. Physiol Plant 116:431–440Google Scholar
  98. Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VEA, Yanofsky C (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. J Biol Chem 269:12060–12066Google Scholar
  99. Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O et al (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into the components and tactic movement. Plant Cell 18:1908–1930Google Scholar
  100. Shah MR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.00531
  101. Shaish A, Avron M, Ben-Amotz A (1990) Effect of inhibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil. Plant Cell Physiol 31:689–696Google Scholar
  102. Shaish A, Ben-Amotz A, Avron M (1991) Production and selection of high β-carotene mutants of Dunaliella bardawil (chlorophyta). J Phycol 27:652–656Google Scholar
  103. Solovchenko AE (2015) Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res 125:145–152Google Scholar
  104. Solovchenko A, Neverov K (2017) Carotenogenic response in photosynthetic organisms: a colorful story. Photosynth Res 133:31–47Google Scholar
  105. Story EN, Kopec RE, Schwartz SJ, Harris GK (2010) An update of the health effects of tomato lycopene. Ann Rev Food Sci Technol.  https://doi.org/10.1146/annurev.food.102308.124120
  106. Strzalka K, Gruszecki WI (1994) Effect of beta-carotene on structural and dynamic properties of model phosphatidylcholine membranes. I. An EPR spin-label study. Biochim Biophys Acta 24:138–142Google Scholar
  107. Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W (2014) Metabolic and network analysis of astaxanthin producing Haematococcus pluvialis under various stress conditions. Bioresour Technol 170:522–529Google Scholar
  108. Takichi S (2011) Carotenoids in algae: distributions, biosynthesis and functions. Mar Drugs 9:1101–1118Google Scholar
  109. Telfer A (2002) What is β-carotene doing in the photosystem II reaction center? Phil Trans R Soc Lond B 357:1431–1440Google Scholar
  110. Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA 107:11626–11631Google Scholar
  111. Tran D, Haven J, Qiu WG, Polle JEW (2009) An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723–729Google Scholar
  112. Trebst A (2003) Function of β-carotene and tocopherol in photosystem II. Z Naturforsch 58:609–620Google Scholar
  113. Wang 2003, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol.  https://doi.org/10.1111/j.0022-3646.2003.03-043.x
  114. Wang B, Zhang Z, Hu Q, Sommerfeld M, Lu Y, Han D (2014a) Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis. PLoS One 9:e106679Google Scholar
  115. Wang H, Ou CG, Zhuang FY, Ma ZG (2014b) The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Mol Breed 34:2065–2079Google Scholar
  116. Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio K, Satou A, Ishikura M, Ohta S (2009) Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nut Biochem 21:381–389Google Scholar
  117. Yuan J-P, Peng J, Yin K, Wang J-H (2011) Potential health promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nut Food Res 55:437–449Google Scholar
  118. Zechmeister L (1962) cis-trans-isomeric carotenoids, vitamin A and Aryl polyenes. Springer, ViennaGoogle Scholar
  119. Zhekisheva YJ, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826Google Scholar
  120. Zhou X, Welsch R, Yang Y, Álvarez A, Matthias R, Yuan H, Fish T, Liu J, Thannhouser TW, Li L (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci USA 112:3558–3563Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations