Skip to main content

Advertisement

Log in

Physical location of tandem repeats in the wheat genome and application for chromosome identification

Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A general distribution of tandem repeats (TRs) in the wheat genome was predicted and a new web page combined with fluorescence in situ hybridization experiments, and the newly developed Oligo probes will improve the resolution for wheat chromosome identification.

Comprehensive sequence analysis of tandem repeats (TR) in the wheat reference genome permits discovery and application of TRs for chromosome identification. Genome-wide localization of TRs was identified in the reference sequences of Chinese Spring using Tandem Repeat Finder (TRF). A database of repeats unit size, array number, and physical coverage length of TRs in the wheat genome was built. The distribution of TRs occupied 3–5% of the wheat chromosomes, with non-random dispersal across the A, B, and D genomes. Three classes of TRs surrounding the predicted genes were compared. An optimized computer-assisted website page B2DSC was constructed for the general distribution and chromosomally enriched zones of TR sequences to be displayed graphically. The physical distribution of predicted TRs in the wheat genome by B2DSC matched well with the corresponding hybridization signals obtained with fluorescence in situ hybridization (FISH). We developed 20 oligonucleotide probes representing 20–60 bp lengths of high copy number of TRs and verified by FISH. An integrated physical map of TR-Oligo probes for wheat chromosome identification was constructed. Our results suggest that the combination of both molecular cytogenetics and genomic research will significantly benefit wheat breeding through chromosome manipulation and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrouk M, Balcárková B, Šimková H, Komínkova E, Martis MM, Jakobson I, Timofejeva L, Rey E, Vrána J, Kilian A, Järve K, Doležel J, Valárik M (2017) The in silico identification and characterization of a bread wheat/Triticum militinae introgression line. Plant Biotechnol J 15:249–256

    Article  CAS  PubMed  Google Scholar 

  • Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H (2015) The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genom 16:453

    Article  CAS  Google Scholar 

  • Anamthawat-Jonsson K, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilinski P, Han Y, Hufford MB, Lorant A, Zhang P, Estep MC, Jiang J, Ross-Ibarra J (2017) Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS One 12:e0177896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM et al (2012) Analysis of the bread wheat genome using whole–genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  Google Scholar 

  • Cuadrado Á, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND–FISH). Chromosoma 119:495–503

    Article  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genome. Chromosoma 107:587–594

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado Á, Golczyk H, Jouve N (2009) A novel, simple and rapid nondenaturing FISH (ND–FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res 17:755–762

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado Á, Carmona A, Jouve N (2013) Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: new insight into the evolution of this complex. PLoS One 8:e81385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadrado A, Bustos A, Jouve N (2017) On the allopolyploid origin and genome structure of the closely related species Hordeum secalinum and Hordeum capense inferred by molecular karyotyping. Ann Bot 120:245–255

    PubMed  PubMed Central  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2012) Single–copy gene fluorescence in situ hybridization and genome analysis: Acc–2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  Google Scholar 

  • Du P, Zhuang L, Wang Y, Yuan L, Wang Q, Wang D, Dawadondup Tan L, Shen J, Xu H, Zhao H, Chu C, Qi Z (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103

    Article  CAS  PubMed  Google Scholar 

  • Evtushenko EV, Levitsky VG, Elisafenko EA, Gunbin KV, Belousov AI, Šafář J, Doležel J, Vershinin AV (2016) The expansion of heterochromatin blocks in rye reflects the co–amplification of tandem repeats and adjacent transposable elements. BMC Genom 17:337

    Article  CAS  Google Scholar 

  • Fu SL, Chen L, Wang YY, Li M, Yang ZJ, Qiu L, Yan BJ, Ren ZL, Tang ZX (2015) Oligonucleotide probes for ND–FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    Article  PubMed  PubMed Central  Google Scholar 

  • Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44:445–477

    Article  CAS  PubMed  Google Scholar 

  • Gemayel R, Cho J, Boeynaems S, Verstrepen KJ (2012) Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 3:461–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Janicki M, Rooke R, Yang G (2011) Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 19:787–808

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Vega JM, Han FP, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154

    Article  CAS  PubMed  Google Scholar 

  • Kishii M, Nagaki K, Tsujimoto H (2001) A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res 9:417–428

    Article  CAS  PubMed  Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat (Triticum aestivum L.) revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Lang T, La S, Li B, Yu Z, Chen Q, Li J, Yang E, Li G, Yang Z (2018) Precise identification of wheat—Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome 61:177–185

    Article  CAS  PubMed  Google Scholar 

  • Li GR, Gao D, Zhang H, Li JB, Wang H, La S, Ma J, Yang Z (2016) Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species. Mol Cytogenet 9:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lang T, Li B, Yu Z, Wang H, Li G, Yang E, Yang Z (2017) Introduction of Thinopyrum intermedium ssp. trichophorum chromosomes to wheat by trigeneric hybridization involving Triticum, Secale and Thinopyrum genera. Planta 245:1121–1135

    Article  CAS  PubMed  Google Scholar 

  • Lu FH, McKenzie N, Kettleborough G, Heavens D, Clark MD, Bevan MW (2018) Independent assessment and improvement of wheat genome sequence assemblies using fosill jumping libraries. Gigascience 7:1–10. https://doi.org/10.1093/gigascience/giy053

    Article  CAS  PubMed  Google Scholar 

  • Lyslak M, Fransz P, Schubert I (2006) Cytogenetic analyses of arabidopsis. Methods Mol Biol 323:173–186

    Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640

    Article  CAS  PubMed  Google Scholar 

  • Mirzaghaderi G, Houben A, Badaeva E (2014) Molecular–cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat. Mol Cytogenet 7:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  CAS  Google Scholar 

  • Pavlek M, Gelfand Y, Plohl M, Meštrović N (2015) Genome–wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res 22:387–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C et al (2013) A high density physical map of chromosome 1BL supports evolutionary studies, map–based cloning and sequencing in wheat. Genome Biol 14:R64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H et al (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 14:R138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Salina EA, Nesterov MA, Frenkel Z, Kiseleva AA, Timonova EM, Magni F, Vrána J, Šafář J, Šimková H, Doležel J, Korol A, Sergeeva EM (2018) Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genom 19(Suppl 3):80

    Article  CAS  Google Scholar 

  • Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa–535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Tang SY, Qiu L, Xiao ZQ, Fu SL, Tang ZX (2016) New oligonucleotide probes for ND–FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes 7:118

    Article  CAS  PubMed Central  Google Scholar 

  • Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T, Zhu W, Zhang J, Fu S (2018) Developing new Oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Front Plant Sci 9:1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Vershinin AV, Svitashev S, Gummesson PO, Salomon B, Bothmer R, Bryngelsson T (1994) Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet 89:217–225

    Article  CAS  PubMed  Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large–scale organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Tang S, Qiu L, Tang Z, Fu S (2017) Oligonucleotides and ND–FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgrounds. Molecules 22:973

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

    Article  CAS  PubMed  Google Scholar 

  • Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near–complete assembly of the hexaploid bread wheat genome. Gigascience 6:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Ian Dundas at the University of Adelaide, Australia, for reviewing the manuscript, and the National Key Research and Development Program of China (2016YFD0102000), Applied and Basic Project (2016JY0075) from Science and Technology Department of Sichuan, China, and National Natural Science Foundation of China (No. 31171542) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujun Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, T., Li, G., Wang, H. et al. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 249, 663–675 (2019). https://doi.org/10.1007/s00425-018-3033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-3033-4

Keywords

Navigation