, Volume 249, Issue 2, pp 515–525 | Cite as

Knockdown of PCBER1, a gene of neolignan biosynthesis, resulted in increased poplar growth

  • Tobias BruegmannEmail author
  • Hendrik Wetzel
  • Kay Hettrich
  • Annika Smeds
  • Stefan Willför
  • Birgit Kersten
  • Matthias Fladung
Original Article


Main conclusion

Poplar trees displayed an increased plant height due to the transgenic knockdown of PCBER1, a gene of lignan biosynthesis. The wood composition was slightly altered in both overexpression and knockdown lines.

The gene PHENYLCOUMARAN BENZYLIC ETHER REDUCTASE1 (PCBER1) is well known as an important gene in the synthesis of lignans, a group of diverse phenylpropanoid derivatives. They are widely distributed in the plant kingdom and may have a role in both plant defense and growth regulation. To analyze its role in biomass formation and wood composition in poplar, both overexpression and knockdown approaches have been performed. Transgenic lines were analyzed on genetic and phenotypic levels, and partly in regard to their biomass composition. While the PCBER1 overexpression approach remained unremarkable concerning the plant height, biomass composition of obtained transgenic lines was modified. They had a significantly increased amount of ethanol extractives. The PCBER1 knockdown resulted in significantly deviating plants; after 17 months of greenhouse cultivation, transgenic plants were up to 38% higher compared to non-transgenic wild type. Most examined transgenic lines did not reveal a significantly enhanced stem diameter after three vegetation periods in the greenhouse. Significant changes were not obtained with regard to the three major wood components, lignin, cellulose and hemicelluloses. As a slight but not significant reduction in ethanol extractives was detected, the hypothesis arises that the lignan content could be influenced. Lignans become important in the pharmaceutical industry and clinical studies concerning cancer and other diseases, thus further investigations on lignan formation in poplar and its connection to biomass formation seem promising.


Biomass Lignan synthesis Lignin Populus Transformation Vegetative growth 



We are grateful to Guido Jach (Phytowelt, Cologne, Germany) for providing the amiRNA transformation vectors. Thanks to Susanne Jelkmann, Olaf Polak, Jonas Schönfeld, Jakob Fromme, Gundel Wiemann, Monika Spauszus, and Rainer Ebbinghaus for technical assistance. This work was part of the joint project “PopMass”, founded by the German Federal Ministry of Education and Research (BMBF) under the funding number 0315972A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2018_3021_MOESM1_ESM.pdf (735 kb)
Supplementary material 1 (PDF 735 kb)
425_2018_3021_MOESM2_ESM.pdf (626 kb)
Supplementary material 2 (PDF 625 kb)
425_2018_3021_MOESM3_ESM.pdf (577 kb)
Supplementary material 3 (PDF 576 kb)
425_2018_3021_MOESM4_ESM.pdf (595 kb)
Supplementary material 4 (PDF 594 kb)
425_2018_3021_MOESM5_ESM.pdf (539 kb)
Supplementary material 5 (PDF 538 kb)
425_2018_3021_MOESM6_ESM.pdf (558 kb)
Supplementary material 6 (PDF 558 kb)
425_2018_3021_MOESM7_ESM.pdf (569 kb)
Supplementary material 7 (PDF 568 kb)
425_2018_3021_MOESM8_ESM.pdf (553 kb)
Supplementary material 8 (PDF 552 kb)
425_2018_3021_MOESM9_ESM.pdf (555 kb)
Supplementary material 9 (PDF 555 kb)
425_2018_3021_MOESM10_ESM.pdf (604 kb)
Supplementary material 10 (PDF 604 kb)


  1. ASTM E1690-08 (2016) Standard test method for determination of ethanol extractives in biomass. Accessed 30 May 2018
  2. Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Baucher M, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350CrossRefGoogle Scholar
  4. Boerjan W, Polle A, Vander Mijnsbrugge K (2003a) Role in lignification and growth for plant phenylcoumaran benzylic ether reductase. US Patent Application No. 10/531,479, Publication US20060015967 A1Google Scholar
  5. Boerjan W, Ralph J, Baucher M (2003b) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  6. Brügmann T (2016) Genetische Modifikation von SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), FRUITFULL (FUL) und weiterer Kandidatengene in Pappelhybriden (Populus spec.). Dissertation, University of HamburgGoogle Scholar
  7. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefGoogle Scholar
  8. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116CrossRefGoogle Scholar
  9. Davin LB, Jourdes M, Patten AM, Kim KW, Vassão DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25(6):1015–1090CrossRefGoogle Scholar
  10. Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13(3):298–303CrossRefGoogle Scholar
  11. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes on pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  12. Fairley P (2011) Introduction: next generation biofuels. Nature 474(7352):S2–S5CrossRefGoogle Scholar
  13. Fladung M, Ahuja MR (1995) “Sandwich” method for nonradioactive hybridization. Biotechniques 18(5):800–802Google Scholar
  14. Fladung M, Polak O (2012) Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genom 13:61CrossRefGoogle Scholar
  15. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121CrossRefGoogle Scholar
  16. FNR (2014) Basisdaten Bioenergie Deutschland 2014. Fachagentur Nachwachsende Rohstoffe, GülzowGoogle Scholar
  17. Gang DR, Kasahara H, Xia ZQ, Vander Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274(11):7516–7527CrossRefGoogle Scholar
  18. Kauter D, Lewandowski I, Claupein W (2001) Pappeln in Kurzumtriebswirtschaft: Eigenschaften und Qualitätsmanagement bei der Festbrennstoffbereitstellung—Ein Überblick. Pflanzenbauwissenschaften 5(2):64–74Google Scholar
  19. Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11(3):137–141CrossRefGoogle Scholar
  20. Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Elsevier, London, pp 639–712CrossRefGoogle Scholar
  21. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457–463CrossRefGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408CrossRefGoogle Scholar
  23. MacRae WD, Towers GN (1984) Biological activities of lignans. Phytochemistry 23(6):1207–1220CrossRefGoogle Scholar
  24. Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121(1):123–136CrossRefGoogle Scholar
  25. Niculaes C, Morreel K, Kim H, Lu F, McKee LS, Ivens B, Haustraete J, Vanholme B, De Rycke R, Hertzberg M, Fromm J, Bulone V, Polle A, Ralph J, Boerjan W (2014) Phenylcoumaran benzylic ether reductase prevents accumulation of compounds formed under oxidative conditions in poplar xylem. Plant Cell 26(9):3775–3791CrossRefGoogle Scholar
  26. Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194(1):46–53CrossRefGoogle Scholar
  27. Nuoendagula Kamimura N, Mori T, Nakabayashi R, Tsuji Y, Hishiyama S, Saito K, Masai E, Kajita S (2016) Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana. Plant Cell Rep 35:513–526CrossRefGoogle Scholar
  28. Pohjamo SP, Willför S, Reunanen M, Hemming J, Holmbom B (2002) Bioactive phenolic substances in fast-growing tree species. Report B1-02. Åbo Akademi University, Process Chemistry Group, ÅboGoogle Scholar
  29. Saguez J, Attoumbré J, Giordanengo P, Baltora-Rosset S (2013) Biological activities of lignans and neolignans on the aphid Myzus persicae (Sulzer). Arthropod Plant Interact 7(2):225–233CrossRefGoogle Scholar
  30. Satake H, Koyama T, Bahabadi SE, Matsumoto E, Ono E, Murata J (2015) Essences in metabolic engineering of lignan biosynthesis. Metabolites 5(2):270–290CrossRefGoogle Scholar
  31. Schirmer R (2009) Sortenprüfung von Pappelklonen-Voraussetzung für einen erfolgreichen Energieholzanbau. Holzproduktion auf forstgenetischer Grundlage im Hinblick auf Klimawandel und Rohstoffverknappung 28:123–129Google Scholar
  32. Schomburg D (2005) Nomenklatur der Lignane und Neolignane. Angew Chem 117:2339–2351CrossRefGoogle Scholar
  33. Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440CrossRefGoogle Scholar
  34. Sixto H, Gil P, Ciria P, Camps F, Sánchez M, Cañellas I, Voltas J (2014) Performance of hybrid poplar clones in short rotation coppice in mediterranean environments: analysis of genotypic stability. GCB Bioenergy 6(6):661–671CrossRefGoogle Scholar
  35. Stafford HA (2000) The evolution of phenolics in plants. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Evolution of metabolic pathways. Elsevier, Oxford, pp 25–54CrossRefGoogle Scholar
  36. Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604CrossRefGoogle Scholar
  37. Umezawa T (1997) Lignans. In: Higuchi T (ed) Biochemistry and molecular biology of wood. Springer, Berlin, pp 181–194Google Scholar
  38. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2(3):371–390CrossRefGoogle Scholar
  39. Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000a) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211(4):502–509CrossRefGoogle Scholar
  40. Vander Mijnsbrugge K, Meyermans H, Van Montagu M, Bauw G, Boerjan W (2000b) Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta 210(4):589–598CrossRefGoogle Scholar
  41. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285CrossRefGoogle Scholar
  42. Wang X, Lu J, Chen H et al (2017) Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell Tissue Organ Cult 129(3):511–520CrossRefGoogle Scholar
  43. Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B (2004) Bioactive phenolic substances in industrially important tree species. Part 2: knots and stemwood of fir species. Holzforschung 58(6):650–659CrossRefGoogle Scholar
  44. Xue LJ, Alabady MS, Mohebbi M, Tsai CJ (2015) Exploiting genome variation to improve next-generation sequencing data analysis and genome editing efficiency in Populus tremula × alba 717–1B4. Tree Genet Genomes 11(4):1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thuenen Institute of Forest GeneticsGrosshansdorfGermany
  2. 2.Fraunhofer Institute for Applied Polymer ResearchPotsdam-GolmGermany
  3. 3.Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityTurku/ÅboFinland

Personalised recommendations