Advertisement

Planta

, Volume 249, Issue 1, pp 181–193 | Cite as

Bio-solar cell factories for photosynthetic isoprenoids production

  • Sung Cheon Ko
  • Hyun Jeong Lee
  • Sun Young Choi
  • Jong-il Choi
  • Han Min WooEmail author
Review
Part of the following topical collections:
  1. Terpenes and Isoprenoids

Abstract

Main conclusion

Photosynthetic production of isoprenoids in cyanobacteria is considered in terms of metabolic engineering and biological importance.

Metabolic engineering of photosynthetic bacteria (cyanobacteria) has been performed to construct bio-solar cell factories that convert carbon dioxide to various value-added chemicals. Isoprenoids, which are found in nature and range from essential cell components to defensive molecules, have great value in cosmetics, pharmaceutics, and biofuels. In this review, we summarize the recent engineering of cyanobacteria for photosynthetic isoprenoids production as well as carbon molar basis comparisons with heterotrophic isoprenoids production in engineered Escherichia coli.

Keywords

Isoprenoid Terpene CO2 conversion Cyanobacteria Metabolic engineering 

Abbreviations

IPP

Isopentenyl diphosphate

DMAPP

Dimethylallyl pyrophosphate

MEP

Methylerythritol 4-phosphate

MVA

Mevalonate

GPP

Geranyl diphosphate

FPP

Farnesyl diphosphate

GGPP

Geranylgeranyl diphosphate

DCW

Dry cell weight

PCC 6803

Synechocystis sp. PCC 6803

PCC 7942

Synechococcus elongatus PCC 7942

PCC 7120

Anabaena sp. PCC 7120

PCC 7002

Synechococcus sp. PCC 7002

Notes

Acknowledgements

The authors thank Prof. Sang Jun Sim at Korea University and Prof. EonSon Jin at Hanyang University for valuable discussion.

Funding

This work was supported by Korea CCS R&D Center (KCRC) (2017M1A8A1072034) and Basic Science Research Program (2017R1A2B2002566) through the National Research Foundation of Korea, funded by the Korean Government (Ministry of Science and ICT). In addition, this work was partially supported by the Golden Seed Project (213008-05-1-WT911) grant, funded by the Ministry of Agriculture and the Ministry of Oceans and Fisheries.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics of approval and consent to participate

Not applicable.

References

  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74.  https://doi.org/10.1126/science.1191652 Google Scholar
  2. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41.  https://doi.org/10.1016/j.ymben.2013.05.004 Google Scholar
  3. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109(1):100–109.  https://doi.org/10.1002/bit.23298 Google Scholar
  4. Bentley FK, García-Cerdán JG, Chen H-C, Melis A (2013) Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. BioEnergy Res 6(3):917–929.  https://doi.org/10.1007/s12155-013-9325-4 Google Scholar
  5. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86.  https://doi.org/10.1093/mp/sst134 Google Scholar
  6. Betterle N, Melis A (2018) Heterologous leader sequences in fusion constructs enhance expression of geranyl diphosphate synthase and yield of beta-phellandrene production in cyanobacteria (Synechocystis). ACS Synth Biol 7(3):912–921.  https://doi.org/10.1021/acssynbio.7b00431 Google Scholar
  7. Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102(15) 6451–6458.  https://doi.org/10.1007/s00253-018-9093-3 Google Scholar
  8. Chaves JE, Romero PR, Kirst H, Melis A (2016) Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production. Photosynth Res 130(1–3):517–527Google Scholar
  9. Chaves JE, Rueda-Romero P, Kirst H, Melis A (2017) Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth Biol 6(12):2281–2292.  https://doi.org/10.1021/acssynbio.7b00214 Google Scholar
  10. Chen F, Li W, Jiang L, Pu X, Yang Y, Zhang G, Luo Y (2016) Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli. J Ind Microbiol Biotechnol 43(9):1281–1292.  https://doi.org/10.1007/s10295-016-1802-2 Google Scholar
  11. Choi SY, Lee HJ, Choi J, Kim J, Sim SJ, Um Y, Kim Y, Lee TS, Keasling JD, Woo HM (2016) Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnol Biofuels 9:202.  https://doi.org/10.1186/s13068-016-0617-8 Google Scholar
  12. Choi SY, Wang JY, Kwak HS, Lee SM, Um Y, Kim Y, Sim SJ, Choi JI, Woo HM (2017) Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor. ACS Synth Biol 6(7):1289–1295.  https://doi.org/10.1021/acssynbio.7b00083 Google Scholar
  13. Choi SY, Sim SJ, Choi JI, Woo HM (2018) Identification of small droplets of photosynthetic squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysis. Lett Appl Microbiol 66(6):523–529.  https://doi.org/10.1111/lam.12874 Google Scholar
  14. Cordell GA (1976) Biosynthesis of sesquiterpenes. Chem Rev 76(4):425–460.  https://doi.org/10.1021/cr60302a002 Google Scholar
  15. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21.  https://doi.org/10.3389/fbioe.2014.00021 Google Scholar
  16. Englund E, Pattanaik B, Ubhayasekera SJ, Stensjo K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9(3):e90270.  https://doi.org/10.1371/journal.pone.0090270 Google Scholar
  17. Englund E, Andersen-Ranberg J, Miao R, Hamberger B, Lindberg P (2015) Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth Biol 4(12):1270–1278.  https://doi.org/10.1021/acssynbio.5b00070 Google Scholar
  18. Fisher K, Schofer SJ, Kanne DB (2013) Squalane and isosqualane compositions and methods for preparing the same. U.S. Patent 8,586,814 B2, November 19Google Scholar
  19. Formighieri C, Melis A (2014a) Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous beta-phellandrene production in Escherichia coli cultures. Arch Microbiol 196(12):853–861.  https://doi.org/10.1007/s00203-014-1024-9 Google Scholar
  20. Formighieri C, Melis A (2014b) Regulation of beta-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 240(2):309–324.  https://doi.org/10.1007/s00425-014-2080-8 Google Scholar
  21. Formighieri C, Melis A (2015) A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and beta-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab Eng 32:116–124.  https://doi.org/10.1016/j.ymben.2015.09.010 Google Scholar
  22. Formighieri C, Melis A (2016) Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth Res 130(1–3):123–135.  https://doi.org/10.1007/s11120-016-0233-2 Google Scholar
  23. Formighieri C, Melis A (2017) Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Appl Microbiol Biotechnol 101(7):2791–2800.  https://doi.org/10.1007/s00253-016-8081-8 Google Scholar
  24. Gao X, Gao F, Liu D, Zhang H, Nie XQ, Yang C (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energ Environ Sci 9(4):1400–1411.  https://doi.org/10.1039/c5ee03102h Google Scholar
  25. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology, vol 148. Springer, ChamGoogle Scholar
  26. Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF (2016) CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38:170–179.  https://doi.org/10.1016/j.ymben.2016.07.007 Google Scholar
  27. Halfmann C, Gu L, Gibbons W, Zhou R (2014a) Genetically engineering cyanobacteria to convert CO(2), water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98(23):9869–9877.  https://doi.org/10.1007/s00253-014-6118-4 Google Scholar
  28. Halfmann C, Gu L, Zhou R (2014b) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16(6):3175–3185.  https://doi.org/10.1039/c3gc42591f Google Scholar
  29. Huang H-H, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng.  https://doi.org/10.1186/1754-1611-7-10 Google Scholar
  30. Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D (2015) Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng 119(2):165–171.  https://doi.org/10.1016/j.jbiosc.2014.07.013 Google Scholar
  31. Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72(4):408–415Google Scholar
  32. Kim E-M, Eom J-H, Um Y, Kim Y, Woo HM (2015) Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J Agric Food Chem 63(18):4606–4612.  https://doi.org/10.1021/acs.jafc.5b01334 Google Scholar
  33. Kim JH, Wang C, Jang HJ, Cha MS, Park JE, Jo SY, Choi ES, Kim SW (2016) Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb Cell Fact 15(1):214.  https://doi.org/10.1186/s12934-016-0612-6 Google Scholar
  34. Kim WJ, Lee S-M, Um Y, Sim SJ, Woo HM (2017) Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.00293 Google Scholar
  35. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355.  https://doi.org/10.1146/annurev.arplant.043008.091955 Google Scholar
  36. Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 185:1–7.  https://doi.org/10.1016/j.jbiotec.2014.05.025 Google Scholar
  37. Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB (2018) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem 293(14):5044–5052.  https://doi.org/10.1074/jbc.R117.815886 Google Scholar
  38. Kong MK, Kang H-J, Kim JH, Oh SH, Lee PC (2015) Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli. J Biotechnol 214:95–102.  https://doi.org/10.1016/j.jbiotec.2015.09.016 Google Scholar
  39. Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72Google Scholar
  40. Lapczynski A, Bhatia SP, Letizia CS, Api AM (2008) Fragrance material review on geranyl linalool. Food Chem Toxicol 46(Suppl 11):S176–S178.  https://doi.org/10.1016/j.fct.2008.06.050 Google Scholar
  41. Leavell MD, McPhee DJ, Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119.  https://doi.org/10.1016/j.copbio.2015.10.007 Google Scholar
  42. Lee HJ, Lee J, Lee SM, Um Y, Kim Y, Sim SJ, Choi JI, Woo HM (2017) Direct conversion of CO2 to alpha-farnesene using metabolically engineered Synechococcus elongatus PCC 7942. J Agric Food Chem 65(48):10424–10428.  https://doi.org/10.1021/acs.jafc.7b03625 Google Scholar
  43. Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KLJ (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA 107(31):13654–13659.  https://doi.org/10.1073/pnas.1006138107 Google Scholar
  44. Lin PC, Saha R, Zhang F, Pakrasi HB (2017) Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 7(1):17503.  https://doi.org/10.1038/s41598-017-17831-y Google Scholar
  45. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79.  https://doi.org/10.1016/j.ymben.2009.10.001 Google Scholar
  46. Luan G, Lu X (2018) Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 36(2):430–442.  https://doi.org/10.1016/j.biotechadv.2018.01.005 Google Scholar
  47. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push–pull–restrain strategy. J Biotechnol 186:128–136.  https://doi.org/10.1016/j.jbiotec.2014.06.024 Google Scholar
  48. Maresca JA, Graham JE, Wu M, Eisen JA, Bryant DA (2007) Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc Natl Acad Sci USA 104(28):11784–11789.  https://doi.org/10.1073/pnas.0702984104 Google Scholar
  49. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802.  https://doi.org/10.1038/nbt833 Google Scholar
  50. Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS, Petzold CJ, Keasling JD (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol 98(4):1567–1581.  https://doi.org/10.1007/s00253-013-5361-4 Google Scholar
  51. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532.  https://doi.org/10.1038/nature12051 Google Scholar
  52. Pateraki I, Andersen-Ranberg J, Jensen NB, Wubshet SG, Heskes AM, Forman V, Hallstrom B, Hamberger B, Motawia MS, Olsen CE, Staerk D, Hansen J, Moller BL, Hamberger B (2017) Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife.  https://doi.org/10.7554/eLife.23001 Google Scholar
  53. Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483.  https://doi.org/10.1038/ncomms1494 Google Scholar
  54. Pray T (2010) Biomass R&D technical advisory committee: drop-in fules panel. Amyris, Emeryville. https://biomassboard.gov/pdfs/biomass_tac_todd_pray_09_29_2010.pdf Google Scholar
  55. Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C (2011) The production of the sesquiterpene beta-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J Plant Physiol 168(8):848–852.  https://doi.org/10.1016/j.jplph.2010.11.006 Google Scholar
  56. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943Google Scholar
  57. Sabulal B, Dan M, Kurup R, Pradeep NS, Valsamma RK, George V (2006) Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry 67(22):2469–2473.  https://doi.org/10.1016/j.phytochem.2006.08.003 Google Scholar
  58. Sarria S, Wong B, Martin HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol 3(7):466–475.  https://doi.org/10.1021/sb4001382 Google Scholar
  59. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21(6):1617–1626.  https://doi.org/10.1021/bp050246d Google Scholar
  60. Tarkowská D, Strnad M (2018) Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 247(5):1051–1066.  https://doi.org/10.1007/s00425-018-2878-x Google Scholar
  61. Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW (2014) Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 42(17):e136.  https://doi.org/10.1093/nar/gku673 Google Scholar
  62. Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106.  https://doi.org/10.1007/10_2014_295 Google Scholar
  63. Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes—common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72(13):1635–1646.  https://doi.org/10.1016/j.phytochem.2011.01.019 Google Scholar
  64. Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep.  https://doi.org/10.1038/srep39681 Google Scholar
  65. Vavitsas K, Rue EØ, Stefánsdóttir LK, Gnanasekaran T, Blennow A, Crocoll C, Gudmundsson S, Jensen PE (2017) Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microb Cell Fact.  https://doi.org/10.1186/s12934-017-0757-y Google Scholar
  66. Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4(1):87–95Google Scholar
  67. Vickers CE, Williams TC, Peng B, Cherry J (2017) Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 40:47–56.  https://doi.org/10.1016/j.cbpa.2017.05.017 Google Scholar
  68. Wang C, Zhou J, Jang HJ, Yoon SH, Kim JY, Lee SG, Choi ES, Kim SW (2013) Engineered heterologous FPP synthases-mediated Z, E-FPP synthesis in E. coli. Metab Eng 18:53–59.  https://doi.org/10.1016/j.ymben.2013.04.002 Google Scholar
  69. Wang X, Liu W, Xin C, Zheng Y, Cheng Y, Sun S, Li R, Zhu XG, Dai SY, Rentzepis PM, Yuan JS (2016) Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci USA 113(50):14225–14230.  https://doi.org/10.1073/pnas.1613340113 Google Scholar
  70. Wang C, Zada B, Wei G, Kim S-W (2017a) Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour Technol 241:430–438.  https://doi.org/10.1016/j.biortech.2017.05.168 Google Scholar
  71. Wang F, Lv X, Xie W, Zhou P, Zhu Y, Yao Z, Yang C, Yang X, Ye L, Yu H (2017b) Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab Eng 39:257–266Google Scholar
  72. Ward VCA, Chatzivasileiou AO, Stephanopoulos G (2018) Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fny079 Google Scholar
  73. Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact.  https://doi.org/10.1186/s12934-016-0514-7 Google Scholar
  74. Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22(3):344–350.  https://doi.org/10.1016/j.copbio.2011.04.023 Google Scholar
  75. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109(3):111–118.  https://doi.org/10.1073/pnas.1110740109 Google Scholar
  76. Wichmann J, Baier T, Wentnagel E, Lauersen KJ, Kruse O (2018) Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng 45:211–222.  https://doi.org/10.1016/j.ymben.2017.12.010 Google Scholar
  77. Woo HM (2017) Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Curr Opin Biotechnol 45:1–7.  https://doi.org/10.1016/j.copbio.2016.11.017 Google Scholar
  78. Wu W, Liu F, Davis RW (2018) Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metab Eng Commun 6:13–21.  https://doi.org/10.1016/j.meteno.2018.01.001 Google Scholar
  79. Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58(6):1112–1114Google Scholar
  80. Yang J, Nie Q (2016) Engineering Escherichia coli to convert acetic acid to β-caryophyllene. Microb Cell Fact.  https://doi.org/10.1186/s12934-016-0475-x Google Scholar
  81. Zebec Z, Wilkes J, Jervis AJ, Scrutton NS, Takano E, Breitling R (2016) Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr Opin Chem Biol 34:37–43.  https://doi.org/10.1016/j.cbpa.2016.06.002 Google Scholar
  82. Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111(7):1396–1405.  https://doi.org/10.1002/bit.25198 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Science and BiotechnologySungkyunkwan University (SKKU)SuwonRepublic of Korea
  2. 2.Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations