Advertisement

Planta

, Volume 248, Issue 5, pp 1063–1078 | Cite as

Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants

  • Santosh G. Lavhale
  • Raviraj M. Kalunke
  • Ashok P. Giri
Review
  • 255 Downloads

Abstract

Main conclusions

The 4-coumarate-CoA ligases (4CL) contribute in channelizing flux of different phenylpropanoid biosynthetic pathways. Expression of 4CL is optimized at developmental stages and in response to environmental triggers such as biotic and abiotic stresses. The enzyme is valuable in metabolic pathway engineering for curcuminoids, resveratrol, biofuel production and nutritional improvement. Vigorous analysis of regulation at functional and expression level is obligatory to attain efficient commercial production of candidate metabolites using 4CL.

Phenylpropanoid pathway provides precursors for numerous secondary metabolites in plants. In this pathway, 4-coumarate-CoA ligase (EC 6.2.1.12, 4CL) is the main branch point enzyme which generates activated thioesters. Being the last enzyme of three shared common steps in general phenylpropanoid pathway, it contributes to channelize precursors for different phenylpropanoids. In plants, 4CL enzymes are present in multiple isoforms and encoded by small gene family. It belongs to adenylate-forming enzyme family and catalyzes the reaction that converts hydroxy or methoxy cinnamic acid derivatives to corresponding thioesters. These thioesters are further utilized for biosynthesis of phenylpropanoids, which are known for having numerous nutritional and medicinal applications. In addition, the 4CL enzymes have been characterized from various plants for their role in plant physiology or in biotic and abiotic stresses. Furthermore, specific isoforms are differentially regulated upon exposure to diverse stimuli leading to flux diversion toward the particular metabolite biosynthesis. Evolutionary studies showed that 4CL separately evolved after monocot and dicot segregation. Here, we provide a comprehensive review on 4CL, which includes evolution, function, gene/protein structure, role in metabolite biosynthesis and cellular partition, and their regulation. Based on the available data, we have explored the scope for pathway engineering by utilizing 4CL enzymes.

Keywords

Plant secondary metabolites Phenylpropanoids 4-coumarate-CoA ligase Metabolic engineering 

Abbreviations

4CL

4-coumarate:CoA ligase

C3H

p-coumarate 3-hydroxylase

C4H

Cinnamate 4-hydroxylase

CAD

Cinnamyl alcohol dehydrogenase

CCoAOMT

Caffeoyl-CoA O-methyltransferase

PAL

Phenylalanine ammonia lyase

CVOMT

Chavicol O-methyltransferase

COMT

Caffeic acid O-methyltransferase

EOMT

Eugenol O-methyltransferase

F5H

Ferulate 5-hydroxylase

CAD

Cinnamyl alcohol dehydrogenase

CHS

Chalcone synthase

ANS, F5H

Ferulate 5-hydroxylase

HCT

p-hydroxycinnamoyl-CoA:quinate shikimate p-hydroxycinnamoyltransferase

DFR

Dihydroflavonol 4-reductase

Notes

Acknowledgements

We thank Dr. Jayant Khandare, Actorius Innovations and Research Pvt Ltd., Pune, India for critically reading the manuscript and for the English language suggestions. SGL acknowledge the support from Council of Scientific and Industrial Research (CSIR), New Delhi, India. The work was funded by CSIR-NCL-IGIB Joint Research program under XII Five Year Plan (BSC0124).

Supplementary material

425_2018_2965_MOESM1_ESM.tiff (7.7 mb)
Supplementary material 1 (TIFF 7922 kb)
425_2018_2965_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)

References

  1. Allina SM, Pri-Hadash A, Theilmann DA et al (1998) 4-Coumarate-coenzyme A ligase in hybrid poplar properties of native enzyme, cDNA cloning, and analysis of recombinant enzyme. Plant Physiol 116:743–754.  https://doi.org/10.1104/pp.116.2.743 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amalraj A, Pius A, Gopi S et al (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med 7(2):205–233.  https://doi.org/10.1016/j.jtcme.2016.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  3. An CH, Lee KW, Lee SH et al (2015) Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. Plant Physiol Biochem 89:1–10.  https://doi.org/10.1016/j.plaphy.2015.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anand A, Jayaramaiah RH, Beedkar SD et al (2016) Comparative functional characterization of eugenol synthase from four different Ocimum species: implications on eugenol accumulation. Biochim Biophys Acta Proteins Proteom 1864(11):1539–1547.  https://doi.org/10.1016/j.bbapap.2016.08.004 CrossRefGoogle Scholar
  5. Baldi P, Moser M, Brilli M et al (2017) Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development. Planta 245:1021–1035.  https://doi.org/10.1007/s00425-017-2660-5 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Becker-Andre M, Schulze-Lefert P, Hahlbrock K (1991) Structural comparison, modes of expression, and putative cis-acting elements of the two 4-Coumarate: CoA ligase genes in potato. J Biol Chem 266:8551–8559PubMedPubMedCentralGoogle Scholar
  7. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633.  https://doi.org/10.1111/j.1469-8137.1994.tb02968.x CrossRefGoogle Scholar
  8. Blanco-Ulate B, Hoper H, Figueroa-Balderas R et al (2017) Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening. J Exp Bot 68(5):1225–1238.  https://doi.org/10.1093/jxb/erw506 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant Microbe Interact 22(5):487–497.  https://doi.org/10.1094/MPMI-22-5-0487 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA 96(22):12929–12934.  https://doi.org/10.1073/pnas.96.22.12929 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cao Y, Han Y, Li D et al (2016) Systematic analysis of the 4-Coumarate: coenzyme A ligase (4CL) related genes and expression profiling during Fruit development in the Chinese Pear. Genes 7(10):89.  https://doi.org/10.3390/genes7100089 CrossRefGoogle Scholar
  12. Chandran D, Sharapova N, Ivashuta S et al (2008) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–166.  https://doi.org/10.1007/s00425-008-0726-0 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chemler JA, Koffas MA (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605.  https://doi.org/10.1016/j.copbio.2008.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen HC, Song J, Wang JP et al (2014a) Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid: Coenzyme A ligase protein complex formation, regulation, and numerical modeling. Plant Cell 26:876–893.  https://doi.org/10.1105/tpc.113.119685 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen HY, Babst BA, Nyamdari B et al (2014b) Ectopic expression of a Loblolly Pine class II 4-Coumarate:CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in Populus. Plant Cell Physiol 55(9):1669–1678.  https://doi.org/10.1093/pcp/pcu098 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Choudhary EK, Choi B, Cho BK et al (2013) Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions. Plant Omics J. 6(4):254–262Google Scholar
  17. Citti C, Battisti UM, Braghiroli D et al (2017) A metabolomic approach applied to a liquid chromatography coupled to high-resolution tandem mass spectrometry method (HPLC–ESI–HRMS/MS): towards the comprehensive evaluation of the chemical composition of cannabis medicinal extracts. Phytochem Anal 29:144–155.  https://doi.org/10.1002/pca.2722 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Costa MA, Bedger DL, Moinuddin SGA et al (2005) Characterization in vitro and in vivo of the putative multigene 4-coumarate: CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66:2072–2091.  https://doi.org/10.1016/j.phytochem.2005.06.022 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cukovic D, Ehlting J, Vanziffle JA (2001) Structure and evolution of 4-Coumarate: coenzyme A ligase (4CL) gene families. Biol Chem 382:645–654.  https://doi.org/10.1515/BC.2001.076 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism Plant Cell 7:1085–1097.  https://doi.org/10.1105/tpc.7.7.1085 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1(6):171–178.  https://doi.org/10.1016/1360-1385(96)10019-4 CrossRefGoogle Scholar
  22. Douglas C, Hoffmann H, Wolfgang S et al (1987) Structure and elicitor or uv-light-stimulated expression of two 4-coumarate-CoA ligase genes in parsley. EMBO J 6(5):1189–1195CrossRefPubMedCentralGoogle Scholar
  23. Ehlting J, Buttner D, Wang Q et al (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19:9–20.  https://doi.org/10.1046/j.1365-313X.1999.00491.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ehlting J, Shin JJK, Douglas CJ (2001) Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains. Plant J 25:455–465.  https://doi.org/10.1046/j.1365-313X.2001.01122.x CrossRefGoogle Scholar
  25. Ferrieri AP, Arce CCM, Machado RAR et al (2015) A Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. New Phytol 208:519–530.  https://doi.org/10.1111/nph.13475 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Floros DJ, Petras D, Kapono CA et al (2017) Mass spectrometry based molecular 3D-cartography of plant metabolites. Front Plant Sci 8:429.  https://doi.org/10.3389/fpls.2017.00429 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists 9:e0152.  https://doi.org/10.1199/tab.0152 CrossRefGoogle Scholar
  28. Freund DM, Hegeman AD (2017) Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 43:41–48.  https://doi.org/10.1016/j.copbio.2016.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fritzemeier KH, Cretin C, Kombrink E et al (1987) Transient induction of phenylalanine ammonia-lyase and 4-Coumarate:CoA ligase mRNAs in Potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiol 85:34–41.  https://doi.org/10.1104/pp.85.1.34 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fujino N, Tenma N, Waki T et al (2018) Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species. Plant J 94(2):372–392.  https://doi.org/10.1111/tpj.13864 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fukushima A, Kusano M, Redestig H et al (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13:532–538.  https://doi.org/10.1016/j.cbpa.2009.09.022 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fulda M, Heinz E, Wolter FP (1994) The fadD gene of Escherichia coli K12 is located close to rnd at 39.6 min of the chromosomal map and is a new member of the AMP-binding protein family. Mol Gen Genet 242:241–249.  https://doi.org/10.1007/BF00280412 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gaid MM, Scharnhop H, Ramadan H et al (2011) 4-Coumarate:CoA ligase family members from elicitor-treated Sorbus aucuparia cell cultures. J Plant Physiol 168:944–951.  https://doi.org/10.1016/j.jplph.2010.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gao S, Yu HN, Xu RX et al (2015) Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111:48–58.  https://doi.org/10.1016/j.phytochem.2014.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giovinazzo G, Ingrosso I, Paradiso A et al (2012) Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Foods Hum Nutr 67:191–199.  https://doi.org/10.1007/s11130-012-0299-8 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Goufo P, Moutinho-Pereira JM, Jorge TF et al (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front. Plant Sci 8:586.  https://doi.org/10.3389/fpls.2017.00586 CrossRefGoogle Scholar
  37. Gui J, Shen J, Li L (2011) Functional characterization of evolutionarily divergent 4-Coumarate: coenzyme A ligases in Rice. Plant Physiol 157:574–586.  https://doi.org/10.1104/pp.111.178301 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Ann Rev Plant Physiol 40:347–369CrossRefGoogle Scholar
  39. Hamada K, Nishida T, Yamauchi K et al (2004) 4-Coumarate: coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA. J Plant Res 117:303–310.  https://doi.org/10.1007/s10265-004-0159-1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503.  https://doi.org/10.1146/annurev.arplant.50.1.473 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083.  https://doi.org/10.1105/tpc.7.7.1071 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hrazdina G, Wagner GJ (1985) Metabolic pathways as enzyme complexes: evidence 641 for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme 642 complexes. Arch Biochem Biophys 237:88–100CrossRefPubMedCentralGoogle Scholar
  43. Hu W, Kawaoka A, Tsai CJ et al (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate: coenzyme A ligase (4CL) genes in Aspen (Populus tremuloides). Proc Natl Acad Sci USA 95:5407–5412.  https://doi.org/10.1073/pnas.0307307101 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hu WJ, Harding SA, Lung J et al (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812.  https://doi.org/10.1038/11758 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hu Y, Gai Y, Yin L et al (2010) Crystal structures of a Populus tomentosa 4-coumarate: CoA ligase shed light on its enzymatic mechanisms. Plant Cell 22:3093–3104.  https://doi.org/10.1105/tpc.109.072652 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hue HTT, Ha DTT, Hai NV et al (2016) Isolation and characterization of the 4-coumarate:coenzyme A ligase (4CL1) promoter from Eucalyptus camaldulensis. Physiol Mol Biol Plants 22(3):399–405.  https://doi.org/10.1007/s12298-016-0369-8 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jin H, Cominell E, Bailey P et al (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19(22):6150–6161.  https://doi.org/10.1093/emboj/19.22.6150 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jung JH, Kannan B, Dermawan H (2016) Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improve cell wall saccharification from field grown sugarcane. Plant Mol Biol 92:505–517.  https://doi.org/10.1007/s11103-016-0527-y CrossRefPubMedPubMedCentralGoogle Scholar
  49. Katsuyama Y, Matsuzawa M, Funa N et al (2008) Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology 154:2620–2628.  https://doi.org/10.1099/mic.0.2008/018721-0 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kim YB, Kim JK, Uddin MR et al (2013) Metabolomics analysis and biosynthesis of Rosmarinic acid in Agastache rugosa Kuntze treated with Methyl Jasmonate. PLoS One 8(5):e64199.  https://doi.org/10.1371/journal.pone.0064199 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25.  https://doi.org/10.1170/T772 CrossRefPubMedGoogle Scholar
  52. Kueger S, Steinhauser D, Willmitzer L et al (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70:39–50.  https://doi.org/10.1111/j.1365-313X.2012.04902.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lee D, Douglas CJ (1996) Two divergent members of a tobacco 4-Coumarate: coenzyme A ligase (4CL) gene family (cDNA structure, gene inheritance and expression, and properties of recombinant proteins). Plant Physiol 112:193–205.  https://doi.org/10.1104/pp.112.1.193 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Li Z, Nair SK (2015) Structural basis for specificity and flexibility in a plant 4-coumarate:CoA ligase. Structure 23:2032–2042.  https://doi.org/10.1016/j.str.2015.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li ZB, Li CF, Li J et al (2014) Molecular cloning and functional characterization of two divergent 4-Coumarate: coenzyme A ligases from Kudzu (Pueraria lobata). Biol Pharm Bull 37(1):113–122.  https://doi.org/10.1248/bpb.b13-00633 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mandoulakani BA, Eyvazpour E, Ghadimzadeh M (2017) The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry 139:1–7.  https://doi.org/10.1016/j.phytochem.2017.03.006 CrossRefGoogle Scholar
  57. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265CrossRefGoogle Scholar
  58. Naik P, Wang JP, Sederoff R et al (2018) Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis. PLoS One 13(3):e0193896.  https://doi.org/10.1371/journal.pone.0193896 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Oliveira MB, Andrade RV, Grossi de Sá MF et al (2015) Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorumPhaseolus vulgaris interaction. Front Microbiol 6:1162.  https://doi.org/10.3389/fmicb.2015.01162 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47.  https://doi.org/10.1017/jns.2016.41 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Peng XQ, Ke AW, Liu JQ et al (2016) Deletion and hormone induction analyses of the 4-coumarate: CoA ligase gene promoter from Pennisetum purpureum in transgenic tobacco plants. Plant Cell Tiss Organ Cult 126:439–448.  https://doi.org/10.1007/s11240-016-1012-7 CrossRefGoogle Scholar
  62. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125.  https://doi.org/10.1016/S0031-9422(02)00513-7 CrossRefGoogle Scholar
  63. Rani A, Singh K, Sood P et al (2009) p-coumarate:CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genomics 9:271–275.  https://doi.org/10.1007/s10142-008-0098-3 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rao G, Pan X, Xu F et al (2015) Divergent and overlapping function of five 4-Coumarate: coenzyme A ligases from Populus tomentosa. Plant Mol Biol Rep 33:841–854.  https://doi.org/10.1007/s11105-014-0803-4 CrossRefGoogle Scholar
  65. Rastogi S, Kumar R, Chanotiya CS et al (2013) 4-Coumarate:CoA Ligase partitions metabolites for eugenol biosynthesis. Plant Cell Physiol 54(8):1238–1252.  https://doi.org/10.1093/pcp/pct073 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Saewan N, Jimtaisong A (2013) Photoprotection of natural flavonoids. J Appl Pharm Sci 3(09):129–141.  https://doi.org/10.7324/JAPS.2013.3923 CrossRefGoogle Scholar
  67. Schmelz S, Naismith JH (2009) Adenylate-forming enzymes. Curr Opin Struct Biol 19(6):666–671.  https://doi.org/10.1016/j.sbi.2009.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schmelzer E, Kruger-Lebus S, Hahlbrock K (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in Parsley Leaves. Plant Cell 1:993–1001.  https://doi.org/10.1105/tpc.1.10.993 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749.  https://doi.org/10.1016/0031-9422(94)00962-S CrossRefGoogle Scholar
  70. Schneider K, Hovel K, Witzel K et al (2003) The substrate specificity-determining amino acid code of 4- coumarate: CoA ligase. Proc Natl Acad Sci USA 100:8601–8606.  https://doi.org/10.1073/pnas.1430550100 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shigeto J, Ueda Y, Sasaki S et al (2017) Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia. J Plant Res 130:203–210.  https://doi.org/10.1007/s10265-016-0882-4 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Shinde BA, Dholakia BB, Hussain K et al (2017) Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta). Plant Mol Biol 95(4–5):411–423.  https://doi.org/10.1007/s11103-017-0660-2 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Shockey JM, Fulda MS, Browse J (2003) Arabidopsis contains a large superfamily of Acyl-Activating enzymes. Phylogenetic and biochemical analysis reveals a new class of Acyl-Coenzyme A synthetases. Plant Physiol 132:1065–1076.  https://doi.org/10.1104/pp.103.020552 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Silber MV, Meimberg H, Ebel J (2008) Identification of a 4-coumarate: CoA ligase gene family in the moss, Physcomitrella patens. Phytochemistry 69:2449–2456.  https://doi.org/10.1016/j.phytochem.2008.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Singh P, Jayaramaiah RH, Agawane SB et al (2016) Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: proteomic and mechanistic insights. Sci Rep 6:18798.  https://doi.org/10.1038/srep18798 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Soltani BM, Ehlting J, Hamberger B et al (2006) Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. Planta 224:1226–1238.  https://doi.org/10.1007/s00425-006-0296-y CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stuible HP, Büttner D, Ehlting J et al (2000) Mutational analysis of 4-coumarate: CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes. FEBS Lett 467:117–122CrossRefPubMedCentralGoogle Scholar
  78. Sun H, Li Y, Feng S et al (2013) Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 430:1151–1156.  https://doi.org/10.1016/j.bbrc.2012.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Surjadinata BB, Jacobo-Velázquez DA, Cisneros-Zevallos L (2017) UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding. Molecules 22(4):668.  https://doi.org/10.3390/molecules22040668 CrossRefGoogle Scholar
  80. Sutela S, Hahl T, Tiimonen H et al (2014) Phenolic compounds and expression of 4CL genes in silver birch clones and Pt4CL1a lines. Plus One 9(12):e114434.  https://doi.org/10.1371/journal.pone.0114434 CrossRefGoogle Scholar
  81. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452.  https://doi.org/10.1093/nar/gku1003 CrossRefGoogle Scholar
  82. Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132.  https://doi.org/10.1016/j.copbio.2016.04.012 CrossRefGoogle Scholar
  83. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815.  https://doi.org/10.1038/35048692 CrossRefGoogle Scholar
  84. Tohge T, Watanabe M, Hoefgen R et al (2013) Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci 4:62.  https://doi.org/10.3389/fpls.2013.00062 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tzin V, Galili G (2010) The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arabidopsis Book Am Soc Plant Biol 8:e0132.  https://doi.org/10.1199/tab.0132 CrossRefGoogle Scholar
  86. Uhlmann A, Ebel J (1993) Molecular cloning and expression of 4-Coumarate-Coenzyme A Ligase, an enzyme involved in the resistance response of soybean (Glycine max L.) against pathogen attack. Plant Physiol 102:1147–1156.  https://doi.org/10.1104/pp.102.4.1147 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20.  https://doi.org/10.1093/mp/ssp106 CrossRefGoogle Scholar
  88. Wang Y, Yi H, Wang M (2011) Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA Ligase: stilbene synthase. J Am Chem Soc 51:20684–20687.  https://doi.org/10.1021/ja2085993 CrossRefGoogle Scholar
  89. Wang B, Sun W, Li Q et al (2015) Genome wide analysis phenylpropanoid biosynthesis genes in Salvia miltiorrhiza. Planta 241:711–725.  https://doi.org/10.1007/s00425-014-2212-1 CrossRefGoogle Scholar
  90. Wang CH, You J, Cai YX et al (2016) Characterization and functional analysis of 4-Coumarate-CoA Ligase genes in Mulberry. PLoS One 11(5):e0155814.  https://doi.org/10.1371/journal.pone.0155814.g001 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wei XX, Wang WQ (2004) Evolution of 4-coumarate:coenzyme A ligase (4CL) gene and divergence of Larix (Pinaceae). Mol Phylogenet Evol 31(2):542–553.  https://doi.org/10.1016/j.ympev.2003.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149.  https://doi.org/10.1034/j.1399-3054.1999.100119.x CrossRefGoogle Scholar
  93. Zhang CH, Ma T, Luo WC et al (2015) Identification of 4CL genes in desert Poplars and their changes in expression in response to salt stress. Genes 6:901–917.  https://doi.org/10.3390/genes6030901 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhao Y, Dong W, Wang K et al (2017) Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars. Front Plant Sci 8:1552.  https://doi.org/10.3389/fpls.2017.01552 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Santosh G. Lavhale
    • 1
  • Raviraj M. Kalunke
    • 1
  • Ashok P. Giri
    • 1
  1. 1.Plant Molecular Biology Unit, Division of Biochemical SciencesCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations